\left. \begin{array} { l } { 5 v ( 3 v + 7 ) - 3 ( 1 - 8 v ) } \\ { 15 v ^ { 2 } + 59 v - 3 } \\ { ( 3 k - 2 ) ( 2 k + 4 ) } \end{array} \right.
மிகக்குறைந்த பொதுவான பெருக்கம்
2\left(3k-2\right)\left(k+2\right)\left(15v^{2}+59v-3\right)
மதிப்பிடவும்
15v^{2}+59v-3,\ 15v^{2}+59v-3,\ 6k^{2}+8k-8
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
15v^{2}+59v-3=15\left(v-\left(-\frac{1}{30}\sqrt{3661}-\frac{59}{30}\right)\right)\left(v-\left(\frac{1}{30}\sqrt{3661}-\frac{59}{30}\right)\right) 15v^{2}+59v-3=15\left(v-\left(-\frac{1}{30}\sqrt{3661}-\frac{59}{30}\right)\right)\left(v-\left(\frac{1}{30}\sqrt{3661}-\frac{59}{30}\right)\right) 6k^{2}+8k-8=2\left(3k-2\right)\left(k+2\right)
ஏற்கனவே காரணிபடுத்தாத கோவைகளை காரணிப்படுத்தவும்.
2\left(3k-2\right)\left(k+2\right)\left(15v^{2}+59v-3\right)
எல்லா கோவைகளிலும் உள்ள காரணிகள் மற்றும் அவற்றின் அதிகபட்ச அடுக்கு அனைத்தையும் அடையாளம் காணவும். மீச்சிறு பொது பெருக்கியைப் பெற, இந்தக் காரணிகளின் அதிகபட்ச அடுக்குகளைப் பெருக்கவும்.
90k^{2}v^{2}+120kv^{2}-120v^{2}+354vk^{2}+472kv-472v-18k^{2}-24k+24
கோவையை விரிவாக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}