x, y-க்காகத் தீர்க்கவும்
x=2
y=1
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
41x+53y=135,53x+41y=147
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
41x+53y=135
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
41x=-53y+135
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 53y-ஐக் கழிக்கவும்.
x=\frac{1}{41}\left(-53y+135\right)
இரு பக்கங்களையும் 41-ஆல் வகுக்கவும்.
x=-\frac{53}{41}y+\frac{135}{41}
-53y+135-ஐ \frac{1}{41} முறை பெருக்கவும்.
53\left(-\frac{53}{41}y+\frac{135}{41}\right)+41y=147
பிற சமன்பாடு 53x+41y=147-இல் x-க்கு \frac{-53y+135}{41}-ஐப் பிரதியிடவும்.
-\frac{2809}{41}y+\frac{7155}{41}+41y=147
\frac{-53y+135}{41}-ஐ 53 முறை பெருக்கவும்.
-\frac{1128}{41}y+\frac{7155}{41}=147
41y-க்கு -\frac{2809y}{41}-ஐக் கூட்டவும்.
-\frac{1128}{41}y=-\frac{1128}{41}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{7155}{41}-ஐக் கழிக்கவும்.
y=1
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{1128}{41}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{-53+135}{41}
x=-\frac{53}{41}y+\frac{135}{41}-இல் y-க்கு 1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{53}{41} உடன் \frac{135}{41}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=2,y=1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
41x+53y=135,53x+41y=147
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}41&53\\53&41\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}135\\147\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}41&53\\53&41\end{matrix}\right))\left(\begin{matrix}41&53\\53&41\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}41&53\\53&41\end{matrix}\right))\left(\begin{matrix}135\\147\end{matrix}\right)
\left(\begin{matrix}41&53\\53&41\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}41&53\\53&41\end{matrix}\right))\left(\begin{matrix}135\\147\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}41&53\\53&41\end{matrix}\right))\left(\begin{matrix}135\\147\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{41}{41\times 41-53\times 53}&-\frac{53}{41\times 41-53\times 53}\\-\frac{53}{41\times 41-53\times 53}&\frac{41}{41\times 41-53\times 53}\end{matrix}\right)\left(\begin{matrix}135\\147\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{41}{1128}&\frac{53}{1128}\\\frac{53}{1128}&-\frac{41}{1128}\end{matrix}\right)\left(\begin{matrix}135\\147\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{41}{1128}\times 135+\frac{53}{1128}\times 147\\\frac{53}{1128}\times 135-\frac{41}{1128}\times 147\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=2,y=1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
41x+53y=135,53x+41y=147
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
53\times 41x+53\times 53y=53\times 135,41\times 53x+41\times 41y=41\times 147
41x மற்றும் 53x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 53-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 41-ஆலும் பெருக்கவும்.
2173x+2809y=7155,2173x+1681y=6027
எளிமையாக்கவும்.
2173x-2173x+2809y-1681y=7155-6027
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2173x+2809y=7155-இலிருந்து 2173x+1681y=6027-ஐக் கழிக்கவும்.
2809y-1681y=7155-6027
-2173x-க்கு 2173x-ஐக் கூட்டவும். விதிகள் 2173x மற்றும் -2173x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
1128y=7155-6027
-1681y-க்கு 2809y-ஐக் கூட்டவும்.
1128y=1128
-6027-க்கு 7155-ஐக் கூட்டவும்.
y=1
இரு பக்கங்களையும் 1128-ஆல் வகுக்கவும்.
53x+41=147
53x+41y=147-இல் y-க்கு 1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
53x=106
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 41-ஐக் கழிக்கவும்.
x=2
இரு பக்கங்களையும் 53-ஆல் வகுக்கவும்.
x=2,y=1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}