x, y-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
\left\{\begin{matrix}\\x=0\text{, }y=2\text{, }&\text{unconditionally}\\x=\frac{4\left(y-2\right)}{3}\text{, }y\in \mathrm{C}\text{, }&a=\frac{3}{2}\end{matrix}\right.
x, y-க்காகத் தீர்க்கவும்
\left\{\begin{matrix}\\x=0\text{, }y=2\text{, }&\text{unconditionally}\\x=\frac{4\left(y-2\right)}{3}\text{, }y\in \mathrm{R}\text{, }&a=\frac{3}{2}\end{matrix}\right.
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
ax+4-2y=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
ax-2y=-4
இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
4y-3x=8,-2y+ax=-4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4y-3x=8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
4y=3x+8
சமன்பாட்டின் இரு பக்கங்களிலும் 3x-ஐக் கூட்டவும்.
y=\frac{1}{4}\left(3x+8\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
y=\frac{3}{4}x+2
3x+8-ஐ \frac{1}{4} முறை பெருக்கவும்.
-2\left(\frac{3}{4}x+2\right)+ax=-4
பிற சமன்பாடு -2y+ax=-4-இல் y-க்கு \frac{3x}{4}+2-ஐப் பிரதியிடவும்.
-\frac{3}{2}x-4+ax=-4
\frac{3x}{4}+2-ஐ -2 முறை பெருக்கவும்.
\left(a-\frac{3}{2}\right)x-4=-4
ax-க்கு -\frac{3x}{2}-ஐக் கூட்டவும்.
\left(a-\frac{3}{2}\right)x=0
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.
x=0
இரு பக்கங்களையும் -\frac{3}{2}+a-ஆல் வகுக்கவும்.
y=2
y=\frac{3}{4}x+2-இல் x-க்கு 0-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=2,x=0
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
ax+4-2y=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
ax-2y=-4
இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
4y-3x=8,-2y+ax=-4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\-4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{4a-\left(-3\left(-2\right)\right)}&-\frac{-3}{4a-\left(-3\left(-2\right)\right)}\\-\frac{-2}{4a-\left(-3\left(-2\right)\right)}&\frac{4}{4a-\left(-3\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\-4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{2\left(2a-3\right)}&\frac{3}{2\left(2a-3\right)}\\\frac{1}{2a-3}&\frac{2}{2a-3}\end{matrix}\right)\left(\begin{matrix}8\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{2\left(2a-3\right)}\times 8+\frac{3}{2\left(2a-3\right)}\left(-4\right)\\\frac{1}{2a-3}\times 8+\frac{2}{2a-3}\left(-4\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=2,x=0
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
ax+4-2y=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
ax-2y=-4
இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
4y-3x=8,-2y+ax=-4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-2\times 4y-2\left(-3\right)x=-2\times 8,4\left(-2\right)y+4ax=4\left(-4\right)
4y மற்றும் -2y-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
-8y+6x=-16,-8y+4ax=-16
எளிமையாக்கவும்.
-8y+8y+6x+\left(-4a\right)x=-16+16
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -8y+6x=-16-இலிருந்து -8y+4ax=-16-ஐக் கழிக்கவும்.
6x+\left(-4a\right)x=-16+16
8y-க்கு -8y-ஐக் கூட்டவும். விதிகள் -8y மற்றும் 8y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
\left(6-4a\right)x=-16+16
-4ax-க்கு 6x-ஐக் கூட்டவும்.
\left(6-4a\right)x=0
16-க்கு -16-ஐக் கூட்டவும்.
x=0
இரு பக்கங்களையும் 6-4a-ஆல் வகுக்கவும்.
-2y=-4
-2y+ax=-4-இல் x-க்கு 0-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=2
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
y=2,x=0
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
ax+4-2y=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
ax-2y=-4
இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
4y-3x=8,-2y+ax=-4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4y-3x=8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
4y=3x+8
சமன்பாட்டின் இரு பக்கங்களிலும் 3x-ஐக் கூட்டவும்.
y=\frac{1}{4}\left(3x+8\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
y=\frac{3}{4}x+2
3x+8-ஐ \frac{1}{4} முறை பெருக்கவும்.
-2\left(\frac{3}{4}x+2\right)+ax=-4
பிற சமன்பாடு -2y+ax=-4-இல் y-க்கு \frac{3x}{4}+2-ஐப் பிரதியிடவும்.
-\frac{3}{2}x-4+ax=-4
\frac{3x}{4}+2-ஐ -2 முறை பெருக்கவும்.
\left(a-\frac{3}{2}\right)x-4=-4
ax-க்கு -\frac{3x}{2}-ஐக் கூட்டவும்.
\left(a-\frac{3}{2}\right)x=0
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.
x=0
இரு பக்கங்களையும் -\frac{3}{2}+a-ஆல் வகுக்கவும்.
y=2
y=\frac{3}{4}x+2-இல் x-க்கு 0-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=2,x=0
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
ax+4-2y=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
ax-2y=-4
இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
4y-3x=8,-2y+ax=-4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\-4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{4a-\left(-3\left(-2\right)\right)}&-\frac{-3}{4a-\left(-3\left(-2\right)\right)}\\-\frac{-2}{4a-\left(-3\left(-2\right)\right)}&\frac{4}{4a-\left(-3\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\-4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{2\left(2a-3\right)}&\frac{3}{2\left(2a-3\right)}\\\frac{1}{2a-3}&\frac{2}{2a-3}\end{matrix}\right)\left(\begin{matrix}8\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{2\left(2a-3\right)}\times 8+\frac{3}{2\left(2a-3\right)}\left(-4\right)\\\frac{1}{2a-3}\times 8+\frac{2}{2a-3}\left(-4\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=2,x=0
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
ax+4-2y=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
ax-2y=-4
இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
4y-3x=8,-2y+ax=-4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-2\times 4y-2\left(-3\right)x=-2\times 8,4\left(-2\right)y+4ax=4\left(-4\right)
4y மற்றும் -2y-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
-8y+6x=-16,-8y+4ax=-16
எளிமையாக்கவும்.
-8y+8y+6x+\left(-4a\right)x=-16+16
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -8y+6x=-16-இலிருந்து -8y+4ax=-16-ஐக் கழிக்கவும்.
6x+\left(-4a\right)x=-16+16
8y-க்கு -8y-ஐக் கூட்டவும். விதிகள் -8y மற்றும் 8y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
\left(6-4a\right)x=-16+16
-4ax-க்கு 6x-ஐக் கூட்டவும்.
\left(6-4a\right)x=0
16-க்கு -16-ஐக் கூட்டவும்.
x=0
இரு பக்கங்களையும் 6-4a-ஆல் வகுக்கவும்.
-2y=-4
-2y+ax=-4-இல் x-க்கு 0-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=2
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
y=2,x=0
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}