பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4x-3y=1,5x+2y=7
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x-3y=1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x=3y+1
சமன்பாட்டின் இரு பக்கங்களிலும் 3y-ஐக் கூட்டவும்.
x=\frac{1}{4}\left(3y+1\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{3}{4}y+\frac{1}{4}
3y+1-ஐ \frac{1}{4} முறை பெருக்கவும்.
5\left(\frac{3}{4}y+\frac{1}{4}\right)+2y=7
பிற சமன்பாடு 5x+2y=7-இல் x-க்கு \frac{3y+1}{4}-ஐப் பிரதியிடவும்.
\frac{15}{4}y+\frac{5}{4}+2y=7
\frac{3y+1}{4}-ஐ 5 முறை பெருக்கவும்.
\frac{23}{4}y+\frac{5}{4}=7
2y-க்கு \frac{15y}{4}-ஐக் கூட்டவும்.
\frac{23}{4}y=\frac{23}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5}{4}-ஐக் கழிக்கவும்.
y=1
சமன்பாட்டின் இரு பக்கங்களையும் \frac{23}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{3+1}{4}
x=\frac{3}{4}y+\frac{1}{4}-இல் y-க்கு 1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=1
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{3}{4} உடன் \frac{1}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=1,y=1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4x-3y=1,5x+2y=7
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}4&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
\left(\begin{matrix}4&-3\\5&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&2\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-3\times 5\right)}&-\frac{-3}{4\times 2-\left(-3\times 5\right)}\\-\frac{5}{4\times 2-\left(-3\times 5\right)}&\frac{4}{4\times 2-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{23}&\frac{3}{23}\\-\frac{5}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{23}+\frac{3}{23}\times 7\\-\frac{5}{23}+\frac{4}{23}\times 7\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
4x-3y=1,5x+2y=7
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5\times 4x+5\left(-3\right)y=5,4\times 5x+4\times 2y=4\times 7
4x மற்றும் 5x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
20x-15y=5,20x+8y=28
எளிமையாக்கவும்.
20x-20x-15y-8y=5-28
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 20x-15y=5-இலிருந்து 20x+8y=28-ஐக் கழிக்கவும்.
-15y-8y=5-28
-20x-க்கு 20x-ஐக் கூட்டவும். விதிகள் 20x மற்றும் -20x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-23y=5-28
-8y-க்கு -15y-ஐக் கூட்டவும்.
-23y=-23
-28-க்கு 5-ஐக் கூட்டவும்.
y=1
இரு பக்கங்களையும் -23-ஆல் வகுக்கவும்.
5x+2=7
5x+2y=7-இல் y-க்கு 1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
5x=5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
x=1
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=1,y=1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.