x, y-க்காகத் தீர்க்கவும்
x=45
y=-165
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
4x+y=15,19x+5y=30
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x+y=15
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x=-y+15
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
x=\frac{1}{4}\left(-y+15\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=-\frac{1}{4}y+\frac{15}{4}
-y+15-ஐ \frac{1}{4} முறை பெருக்கவும்.
19\left(-\frac{1}{4}y+\frac{15}{4}\right)+5y=30
பிற சமன்பாடு 19x+5y=30-இல் x-க்கு \frac{-y+15}{4}-ஐப் பிரதியிடவும்.
-\frac{19}{4}y+\frac{285}{4}+5y=30
\frac{-y+15}{4}-ஐ 19 முறை பெருக்கவும்.
\frac{1}{4}y+\frac{285}{4}=30
5y-க்கு -\frac{19y}{4}-ஐக் கூட்டவும்.
\frac{1}{4}y=-\frac{165}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{285}{4}-ஐக் கழிக்கவும்.
y=-165
இரு பக்கங்களையும் 4-ஆல் பெருக்கவும்.
x=-\frac{1}{4}\left(-165\right)+\frac{15}{4}
x=-\frac{1}{4}y+\frac{15}{4}-இல் y-க்கு -165-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{165+15}{4}
-165-ஐ -\frac{1}{4} முறை பெருக்கவும்.
x=45
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{165}{4} உடன் \frac{15}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=45,y=-165
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4x+y=15,19x+5y=30
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&1\\19&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\30\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}4&1\\19&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}15\\30\end{matrix}\right)
\left(\begin{matrix}4&1\\19&5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}15\\30\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}15\\30\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-19}&-\frac{1}{4\times 5-19}\\-\frac{19}{4\times 5-19}&\frac{4}{4\times 5-19}\end{matrix}\right)\left(\begin{matrix}15\\30\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-1\\-19&4\end{matrix}\right)\left(\begin{matrix}15\\30\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 15-30\\-19\times 15+4\times 30\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\-165\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=45,y=-165
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
4x+y=15,19x+5y=30
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
19\times 4x+19y=19\times 15,4\times 19x+4\times 5y=4\times 30
4x மற்றும் 19x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 19-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
76x+19y=285,76x+20y=120
எளிமையாக்கவும்.
76x-76x+19y-20y=285-120
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 76x+19y=285-இலிருந்து 76x+20y=120-ஐக் கழிக்கவும்.
19y-20y=285-120
-76x-க்கு 76x-ஐக் கூட்டவும். விதிகள் 76x மற்றும் -76x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-y=285-120
-20y-க்கு 19y-ஐக் கூட்டவும்.
-y=165
-120-க்கு 285-ஐக் கூட்டவும்.
y=-165
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
19x+5\left(-165\right)=30
19x+5y=30-இல் y-க்கு -165-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
19x-825=30
-165-ஐ 5 முறை பெருக்கவும்.
19x=855
சமன்பாட்டின் இரு பக்கங்களிலும் 825-ஐக் கூட்டவும்.
x=45
இரு பக்கங்களையும் 19-ஆல் வகுக்கவும்.
x=45,y=-165
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}