x, y-க்காகத் தீர்க்கவும்
x = \frac{16}{11} = 1\frac{5}{11} \approx 1.454545455
y=-\frac{6}{11}\approx -0.545454545
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
4x+7y=2,5x+6y=4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x+7y=2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x=-7y+2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 7y-ஐக் கழிக்கவும்.
x=\frac{1}{4}\left(-7y+2\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=-\frac{7}{4}y+\frac{1}{2}
-7y+2-ஐ \frac{1}{4} முறை பெருக்கவும்.
5\left(-\frac{7}{4}y+\frac{1}{2}\right)+6y=4
பிற சமன்பாடு 5x+6y=4-இல் x-க்கு -\frac{7y}{4}+\frac{1}{2}-ஐப் பிரதியிடவும்.
-\frac{35}{4}y+\frac{5}{2}+6y=4
-\frac{7y}{4}+\frac{1}{2}-ஐ 5 முறை பெருக்கவும்.
-\frac{11}{4}y+\frac{5}{2}=4
6y-க்கு -\frac{35y}{4}-ஐக் கூட்டவும்.
-\frac{11}{4}y=\frac{3}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5}{2}-ஐக் கழிக்கவும்.
y=-\frac{6}{11}
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{11}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{7}{4}\left(-\frac{6}{11}\right)+\frac{1}{2}
x=-\frac{7}{4}y+\frac{1}{2}-இல் y-க்கு -\frac{6}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{21}{22}+\frac{1}{2}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{6}{11}-ஐ -\frac{7}{4} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{16}{11}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{21}{22} உடன் \frac{1}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{16}{11},y=-\frac{6}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4x+7y=2,5x+6y=4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&7\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&7\\5&6\end{matrix}\right))\left(\begin{matrix}4&7\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&7\\5&6\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
\left(\begin{matrix}4&7\\5&6\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&7\\5&6\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&7\\5&6\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4\times 6-7\times 5}&-\frac{7}{4\times 6-7\times 5}\\-\frac{5}{4\times 6-7\times 5}&\frac{4}{4\times 6-7\times 5}\end{matrix}\right)\left(\begin{matrix}2\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{11}&\frac{7}{11}\\\frac{5}{11}&-\frac{4}{11}\end{matrix}\right)\left(\begin{matrix}2\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{11}\times 2+\frac{7}{11}\times 4\\\frac{5}{11}\times 2-\frac{4}{11}\times 4\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{11}\\-\frac{6}{11}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{16}{11},y=-\frac{6}{11}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
4x+7y=2,5x+6y=4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5\times 4x+5\times 7y=5\times 2,4\times 5x+4\times 6y=4\times 4
4x மற்றும் 5x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
20x+35y=10,20x+24y=16
எளிமையாக்கவும்.
20x-20x+35y-24y=10-16
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 20x+35y=10-இலிருந்து 20x+24y=16-ஐக் கழிக்கவும்.
35y-24y=10-16
-20x-க்கு 20x-ஐக் கூட்டவும். விதிகள் 20x மற்றும் -20x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
11y=10-16
-24y-க்கு 35y-ஐக் கூட்டவும்.
11y=-6
-16-க்கு 10-ஐக் கூட்டவும்.
y=-\frac{6}{11}
இரு பக்கங்களையும் 11-ஆல் வகுக்கவும்.
5x+6\left(-\frac{6}{11}\right)=4
5x+6y=4-இல் y-க்கு -\frac{6}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
5x-\frac{36}{11}=4
-\frac{6}{11}-ஐ 6 முறை பெருக்கவும்.
5x=\frac{80}{11}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{36}{11}-ஐக் கூட்டவும்.
x=\frac{16}{11}
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{16}{11},y=-\frac{6}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}