பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4x+2y=12,7x+18y=19
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x+2y=12
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x=-2y+12
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
x=\frac{1}{4}\left(-2y+12\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=-\frac{1}{2}y+3
-2y+12-ஐ \frac{1}{4} முறை பெருக்கவும்.
7\left(-\frac{1}{2}y+3\right)+18y=19
பிற சமன்பாடு 7x+18y=19-இல் x-க்கு -\frac{y}{2}+3-ஐப் பிரதியிடவும்.
-\frac{7}{2}y+21+18y=19
-\frac{y}{2}+3-ஐ 7 முறை பெருக்கவும்.
\frac{29}{2}y+21=19
18y-க்கு -\frac{7y}{2}-ஐக் கூட்டவும்.
\frac{29}{2}y=-2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 21-ஐக் கழிக்கவும்.
y=-\frac{4}{29}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{29}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{1}{2}\left(-\frac{4}{29}\right)+3
x=-\frac{1}{2}y+3-இல் y-க்கு -\frac{4}{29}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{2}{29}+3
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{4}{29}-ஐ -\frac{1}{2} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{89}{29}
\frac{2}{29}-க்கு 3-ஐக் கூட்டவும்.
x=\frac{89}{29},y=-\frac{4}{29}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4x+2y=12,7x+18y=19
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&2\\7&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\19\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}4&2\\7&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}12\\19\end{matrix}\right)
\left(\begin{matrix}4&2\\7&18\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}12\\19\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}12\\19\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{4\times 18-2\times 7}&-\frac{2}{4\times 18-2\times 7}\\-\frac{7}{4\times 18-2\times 7}&\frac{4}{4\times 18-2\times 7}\end{matrix}\right)\left(\begin{matrix}12\\19\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{29}&-\frac{1}{29}\\-\frac{7}{58}&\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}12\\19\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{29}\times 12-\frac{1}{29}\times 19\\-\frac{7}{58}\times 12+\frac{2}{29}\times 19\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{89}{29}\\-\frac{4}{29}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{89}{29},y=-\frac{4}{29}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
4x+2y=12,7x+18y=19
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
7\times 4x+7\times 2y=7\times 12,4\times 7x+4\times 18y=4\times 19
4x மற்றும் 7x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 7-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
28x+14y=84,28x+72y=76
எளிமையாக்கவும்.
28x-28x+14y-72y=84-76
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 28x+14y=84-இலிருந்து 28x+72y=76-ஐக் கழிக்கவும்.
14y-72y=84-76
-28x-க்கு 28x-ஐக் கூட்டவும். விதிகள் 28x மற்றும் -28x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-58y=84-76
-72y-க்கு 14y-ஐக் கூட்டவும்.
-58y=8
-76-க்கு 84-ஐக் கூட்டவும்.
y=-\frac{4}{29}
இரு பக்கங்களையும் -58-ஆல் வகுக்கவும்.
7x+18\left(-\frac{4}{29}\right)=19
7x+18y=19-இல் y-க்கு -\frac{4}{29}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
7x-\frac{72}{29}=19
-\frac{4}{29}-ஐ 18 முறை பெருக்கவும்.
7x=\frac{623}{29}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{72}{29}-ஐக் கூட்டவும்.
x=\frac{89}{29}
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
x=\frac{89}{29},y=-\frac{4}{29}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.