பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x+y=4,6x+y=4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x+y=4
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=-y+4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
x=\frac{1}{3}\left(-y+4\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=-\frac{1}{3}y+\frac{4}{3}
-y+4-ஐ \frac{1}{3} முறை பெருக்கவும்.
6\left(-\frac{1}{3}y+\frac{4}{3}\right)+y=4
பிற சமன்பாடு 6x+y=4-இல் x-க்கு \frac{-y+4}{3}-ஐப் பிரதியிடவும்.
-2y+8+y=4
\frac{-y+4}{3}-ஐ 6 முறை பெருக்கவும்.
-y+8=4
y-க்கு -2y-ஐக் கூட்டவும்.
-y=-4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும்.
y=4
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x=-\frac{1}{3}\times 4+\frac{4}{3}
x=-\frac{1}{3}y+\frac{4}{3}-இல் y-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-4+4}{3}
4-ஐ -\frac{1}{3} முறை பெருக்கவும்.
x=0
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{4}{3} உடன் \frac{4}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=0,y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x+y=4,6x+y=4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}3&1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
\left(\begin{matrix}3&1\\6&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-6}&-\frac{1}{3-6}\\-\frac{6}{3-6}&\frac{3}{3-6}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\2&-1\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{1}{3}\times 4\\2\times 4-4\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=0,y=4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x+y=4,6x+y=4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3x-6x+y-y=4-4
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 3x+y=4-இலிருந்து 6x+y=4-ஐக் கழிக்கவும்.
3x-6x=4-4
-y-க்கு y-ஐக் கூட்டவும். விதிகள் y மற்றும் -y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-3x=4-4
-6x-க்கு 3x-ஐக் கூட்டவும்.
-3x=0
-4-க்கு 4-ஐக் கூட்டவும்.
x=0
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
y=4
6x+y=4-இல் x-க்கு 0-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
x=0,y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.