பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x+5y=21,5x+2y=4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x+5y=21
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=-5y+21
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 5y-ஐக் கழிக்கவும்.
x=\frac{1}{3}\left(-5y+21\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=-\frac{5}{3}y+7
-5y+21-ஐ \frac{1}{3} முறை பெருக்கவும்.
5\left(-\frac{5}{3}y+7\right)+2y=4
பிற சமன்பாடு 5x+2y=4-இல் x-க்கு -\frac{5y}{3}+7-ஐப் பிரதியிடவும்.
-\frac{25}{3}y+35+2y=4
-\frac{5y}{3}+7-ஐ 5 முறை பெருக்கவும்.
-\frac{19}{3}y+35=4
2y-க்கு -\frac{25y}{3}-ஐக் கூட்டவும்.
-\frac{19}{3}y=-31
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 35-ஐக் கழிக்கவும்.
y=\frac{93}{19}
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{19}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{5}{3}\times \frac{93}{19}+7
x=-\frac{5}{3}y+7-இல் y-க்கு \frac{93}{19}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{155}{19}+7
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{93}{19}-ஐ -\frac{5}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-\frac{22}{19}
-\frac{155}{19}-க்கு 7-ஐக் கூட்டவும்.
x=-\frac{22}{19},y=\frac{93}{19}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x+5y=21,5x+2y=4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&5\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&5\\5&2\end{matrix}\right))\left(\begin{matrix}3&5\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&2\end{matrix}\right))\left(\begin{matrix}21\\4\end{matrix}\right)
\left(\begin{matrix}3&5\\5&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&2\end{matrix}\right))\left(\begin{matrix}21\\4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&2\end{matrix}\right))\left(\begin{matrix}21\\4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-5\times 5}&-\frac{5}{3\times 2-5\times 5}\\-\frac{5}{3\times 2-5\times 5}&\frac{3}{3\times 2-5\times 5}\end{matrix}\right)\left(\begin{matrix}21\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}&\frac{5}{19}\\\frac{5}{19}&-\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}21\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}\times 21+\frac{5}{19}\times 4\\\frac{5}{19}\times 21-\frac{3}{19}\times 4\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{22}{19}\\\frac{93}{19}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-\frac{22}{19},y=\frac{93}{19}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x+5y=21,5x+2y=4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5\times 3x+5\times 5y=5\times 21,3\times 5x+3\times 2y=3\times 4
3x மற்றும் 5x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
15x+25y=105,15x+6y=12
எளிமையாக்கவும்.
15x-15x+25y-6y=105-12
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 15x+25y=105-இலிருந்து 15x+6y=12-ஐக் கழிக்கவும்.
25y-6y=105-12
-15x-க்கு 15x-ஐக் கூட்டவும். விதிகள் 15x மற்றும் -15x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
19y=105-12
-6y-க்கு 25y-ஐக் கூட்டவும்.
19y=93
-12-க்கு 105-ஐக் கூட்டவும்.
y=\frac{93}{19}
இரு பக்கங்களையும் 19-ஆல் வகுக்கவும்.
5x+2\times \frac{93}{19}=4
5x+2y=4-இல் y-க்கு \frac{93}{19}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
5x+\frac{186}{19}=4
\frac{93}{19}-ஐ 2 முறை பெருக்கவும்.
5x=-\frac{110}{19}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{186}{19}-ஐக் கழிக்கவும்.
x=-\frac{22}{19}
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=-\frac{22}{19},y=\frac{93}{19}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.