பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x+4y=-4,4x+3y=6
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x+4y=-4
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=-4y-4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
x=\frac{1}{3}\left(-4y-4\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=-\frac{4}{3}y-\frac{4}{3}
-4y-4-ஐ \frac{1}{3} முறை பெருக்கவும்.
4\left(-\frac{4}{3}y-\frac{4}{3}\right)+3y=6
பிற சமன்பாடு 4x+3y=6-இல் x-க்கு \frac{-4y-4}{3}-ஐப் பிரதியிடவும்.
-\frac{16}{3}y-\frac{16}{3}+3y=6
\frac{-4y-4}{3}-ஐ 4 முறை பெருக்கவும்.
-\frac{7}{3}y-\frac{16}{3}=6
3y-க்கு -\frac{16y}{3}-ஐக் கூட்டவும்.
-\frac{7}{3}y=\frac{34}{3}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{16}{3}-ஐக் கூட்டவும்.
y=-\frac{34}{7}
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{7}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{4}{3}\left(-\frac{34}{7}\right)-\frac{4}{3}
x=-\frac{4}{3}y-\frac{4}{3}-இல் y-க்கு -\frac{34}{7}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{136}{21}-\frac{4}{3}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{34}{7}-ஐ -\frac{4}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{36}{7}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{136}{21} உடன் -\frac{4}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{36}{7},y=-\frac{34}{7}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x+4y=-4,4x+3y=6
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&4\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\6\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}3&4\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
\left(\begin{matrix}3&4\\4&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-4\times 4}&-\frac{4}{3\times 3-4\times 4}\\-\frac{4}{3\times 3-4\times 4}&\frac{3}{3\times 3-4\times 4}\end{matrix}\right)\left(\begin{matrix}-4\\6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}&\frac{4}{7}\\\frac{4}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}-4\\6\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}\left(-4\right)+\frac{4}{7}\times 6\\\frac{4}{7}\left(-4\right)-\frac{3}{7}\times 6\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{36}{7}\\-\frac{34}{7}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{36}{7},y=-\frac{34}{7}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x+4y=-4,4x+3y=6
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4\times 3x+4\times 4y=4\left(-4\right),3\times 4x+3\times 3y=3\times 6
3x மற்றும் 4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
12x+16y=-16,12x+9y=18
எளிமையாக்கவும்.
12x-12x+16y-9y=-16-18
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 12x+16y=-16-இலிருந்து 12x+9y=18-ஐக் கழிக்கவும்.
16y-9y=-16-18
-12x-க்கு 12x-ஐக் கூட்டவும். விதிகள் 12x மற்றும் -12x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
7y=-16-18
-9y-க்கு 16y-ஐக் கூட்டவும்.
7y=-34
-18-க்கு -16-ஐக் கூட்டவும்.
y=-\frac{34}{7}
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
4x+3\left(-\frac{34}{7}\right)=6
4x+3y=6-இல் y-க்கு -\frac{34}{7}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
4x-\frac{102}{7}=6
-\frac{34}{7}-ஐ 3 முறை பெருக்கவும்.
4x=\frac{144}{7}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{102}{7}-ஐக் கூட்டவும்.
x=\frac{36}{7}
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{36}{7},y=-\frac{34}{7}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.