பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x+2y=-1,6x+6y=-5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x+2y=-1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=-2y-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
x=\frac{1}{3}\left(-2y-1\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=-\frac{2}{3}y-\frac{1}{3}
-2y-1-ஐ \frac{1}{3} முறை பெருக்கவும்.
6\left(-\frac{2}{3}y-\frac{1}{3}\right)+6y=-5
பிற சமன்பாடு 6x+6y=-5-இல் x-க்கு \frac{-2y-1}{3}-ஐப் பிரதியிடவும்.
-4y-2+6y=-5
\frac{-2y-1}{3}-ஐ 6 முறை பெருக்கவும்.
2y-2=-5
6y-க்கு -4y-ஐக் கூட்டவும்.
2y=-3
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.
y=-\frac{3}{2}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-\frac{2}{3}\left(-\frac{3}{2}\right)-\frac{1}{3}
x=-\frac{2}{3}y-\frac{1}{3}-இல் y-க்கு -\frac{3}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=1-\frac{1}{3}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{3}{2}-ஐ -\frac{2}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{2}{3}
1-க்கு -\frac{1}{3}-ஐக் கூட்டவும்.
x=\frac{2}{3},y=-\frac{3}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x+2y=-1,6x+6y=-5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&2\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&2\\6&6\end{matrix}\right))\left(\begin{matrix}3&2\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\6&6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
\left(\begin{matrix}3&2\\6&6\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\6&6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\6&6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{3\times 6-2\times 6}&-\frac{2}{3\times 6-2\times 6}\\-\frac{6}{3\times 6-2\times 6}&\frac{3}{3\times 6-2\times 6}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{3}\\-1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1-\frac{1}{3}\left(-5\right)\\-\left(-1\right)+\frac{1}{2}\left(-5\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\\-\frac{3}{2}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{2}{3},y=-\frac{3}{2}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x+2y=-1,6x+6y=-5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
6\times 3x+6\times 2y=6\left(-1\right),3\times 6x+3\times 6y=3\left(-5\right)
3x மற்றும் 6x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 6-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
18x+12y=-6,18x+18y=-15
எளிமையாக்கவும்.
18x-18x+12y-18y=-6+15
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 18x+12y=-6-இலிருந்து 18x+18y=-15-ஐக் கழிக்கவும்.
12y-18y=-6+15
-18x-க்கு 18x-ஐக் கூட்டவும். விதிகள் 18x மற்றும் -18x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-6y=-6+15
-18y-க்கு 12y-ஐக் கூட்டவும்.
-6y=9
15-க்கு -6-ஐக் கூட்டவும்.
y=-\frac{3}{2}
இரு பக்கங்களையும் -6-ஆல் வகுக்கவும்.
6x+6\left(-\frac{3}{2}\right)=-5
6x+6y=-5-இல் y-க்கு -\frac{3}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
6x-9=-5
-\frac{3}{2}-ஐ 6 முறை பெருக்கவும்.
6x=4
சமன்பாட்டின் இரு பக்கங்களிலும் 9-ஐக் கூட்டவும்.
x=\frac{2}{3}
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
x=\frac{2}{3},y=-\frac{3}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.