x, y-க்காகத் தீர்க்கவும்
x=3
y=3.8
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2.5x+2.5y=17,-1.5x-7.5y=-33
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2.5x+2.5y=17
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2.5x=-2.5y+17
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5y}{2}-ஐக் கழிக்கவும்.
x=0.4\left(-2.5y+17\right)
சமன்பாட்டின் இரு பக்கங்களையும் 2.5-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-y+6.8
-\frac{5y}{2}+17-ஐ 0.4 முறை பெருக்கவும்.
-1.5\left(-y+6.8\right)-7.5y=-33
பிற சமன்பாடு -1.5x-7.5y=-33-இல் x-க்கு -y+6.8-ஐப் பிரதியிடவும்.
1.5y-10.2-7.5y=-33
-y+6.8-ஐ -1.5 முறை பெருக்கவும்.
-6y-10.2=-33
-\frac{15y}{2}-க்கு \frac{3y}{2}-ஐக் கூட்டவும்.
-6y=-22.8
சமன்பாட்டின் இரு பக்கங்களிலும் 10.2-ஐக் கூட்டவும்.
y=3.8
இரு பக்கங்களையும் -6-ஆல் வகுக்கவும்.
x=-3.8+6.8
x=-y+6.8-இல் y-க்கு 3.8-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-19+34}{5}
3.8-ஐ -1 முறை பெருக்கவும்.
x=3
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -3.8 உடன் 6.8-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=3,y=3.8
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2.5x+2.5y=17,-1.5x-7.5y=-33
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2.5&2.5\\-1.5&-7.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-33\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2.5&2.5\\-1.5&-7.5\end{matrix}\right))\left(\begin{matrix}2.5&2.5\\-1.5&-7.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.5&2.5\\-1.5&-7.5\end{matrix}\right))\left(\begin{matrix}17\\-33\end{matrix}\right)
\left(\begin{matrix}2.5&2.5\\-1.5&-7.5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.5&2.5\\-1.5&-7.5\end{matrix}\right))\left(\begin{matrix}17\\-33\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.5&2.5\\-1.5&-7.5\end{matrix}\right))\left(\begin{matrix}17\\-33\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7.5}{2.5\left(-7.5\right)-2.5\left(-1.5\right)}&-\frac{2.5}{2.5\left(-7.5\right)-2.5\left(-1.5\right)}\\-\frac{-1.5}{2.5\left(-7.5\right)-2.5\left(-1.5\right)}&\frac{2.5}{2.5\left(-7.5\right)-2.5\left(-1.5\right)}\end{matrix}\right)\left(\begin{matrix}17\\-33\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{6}\\-\frac{1}{10}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}17\\-33\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 17+\frac{1}{6}\left(-33\right)\\-\frac{1}{10}\times 17-\frac{1}{6}\left(-33\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{19}{5}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=3,y=\frac{19}{5}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2.5x+2.5y=17,-1.5x-7.5y=-33
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-1.5\times 2.5x-1.5\times 2.5y=-1.5\times 17,2.5\left(-1.5\right)x+2.5\left(-7.5\right)y=2.5\left(-33\right)
\frac{5x}{2} மற்றும் -\frac{3x}{2}-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -1.5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2.5-ஆலும் பெருக்கவும்.
-3.75x-3.75y=-25.5,-3.75x-18.75y=-82.5
எளிமையாக்கவும்.
-3.75x+3.75x-3.75y+18.75y=\frac{-51+165}{2}
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -3.75x-3.75y=-25.5-இலிருந்து -3.75x-18.75y=-82.5-ஐக் கழிக்கவும்.
-3.75y+18.75y=\frac{-51+165}{2}
\frac{15x}{4}-க்கு -\frac{15x}{4}-ஐக் கூட்டவும். விதிகள் -\frac{15x}{4} மற்றும் \frac{15x}{4} ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
15y=\frac{-51+165}{2}
\frac{75y}{4}-க்கு -\frac{15y}{4}-ஐக் கூட்டவும்.
15y=57
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், 82.5 உடன் -25.5-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
y=\frac{19}{5}
இரு பக்கங்களையும் 15-ஆல் வகுக்கவும்.
-1.5x-7.5\times \frac{19}{5}=-33
-1.5x-7.5y=-33-இல் y-க்கு \frac{19}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-1.5x-\frac{57}{2}=-33
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{19}{5}-ஐ -7.5 முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
-1.5x=-\frac{9}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{57}{2}-ஐக் கூட்டவும்.
x=3
சமன்பாட்டின் இரு பக்கங்களையும் -1.5-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=3,y=\frac{19}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}