y, x-க்காகத் தீர்க்கவும்
x=7
y=-3
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2y-3x=-27,5y+3x=6
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2y-3x=-27
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
2y=3x-27
சமன்பாட்டின் இரு பக்கங்களிலும் 3x-ஐக் கூட்டவும்.
y=\frac{1}{2}\left(3x-27\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
y=\frac{3}{2}x-\frac{27}{2}
-27+3x-ஐ \frac{1}{2} முறை பெருக்கவும்.
5\left(\frac{3}{2}x-\frac{27}{2}\right)+3x=6
பிற சமன்பாடு 5y+3x=6-இல் y-க்கு \frac{-27+3x}{2}-ஐப் பிரதியிடவும்.
\frac{15}{2}x-\frac{135}{2}+3x=6
\frac{-27+3x}{2}-ஐ 5 முறை பெருக்கவும்.
\frac{21}{2}x-\frac{135}{2}=6
3x-க்கு \frac{15x}{2}-ஐக் கூட்டவும்.
\frac{21}{2}x=\frac{147}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{135}{2}-ஐக் கூட்டவும்.
x=7
சமன்பாட்டின் இரு பக்கங்களையும் \frac{21}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
y=\frac{3}{2}\times 7-\frac{27}{2}
y=\frac{3}{2}x-\frac{27}{2}-இல் x-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=\frac{21-27}{2}
7-ஐ \frac{3}{2} முறை பெருக்கவும்.
y=-3
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{21}{2} உடன் -\frac{27}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
y=-3,x=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2y-3x=-27,5y+3x=6
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-3\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-27\\6\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}2&-3\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-27\\6\end{matrix}\right)
\left(\begin{matrix}2&-3\\5&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-27\\6\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-27\\6\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-3\times 5\right)}&-\frac{-3}{2\times 3-\left(-3\times 5\right)}\\-\frac{5}{2\times 3-\left(-3\times 5\right)}&\frac{2}{2\times 3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-27\\6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{5}{21}&\frac{2}{21}\end{matrix}\right)\left(\begin{matrix}-27\\6\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-27\right)+\frac{1}{7}\times 6\\-\frac{5}{21}\left(-27\right)+\frac{2}{21}\times 6\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=-3,x=7
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
2y-3x=-27,5y+3x=6
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5\times 2y+5\left(-3\right)x=5\left(-27\right),2\times 5y+2\times 3x=2\times 6
2y மற்றும் 5y-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
10y-15x=-135,10y+6x=12
எளிமையாக்கவும்.
10y-10y-15x-6x=-135-12
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 10y-15x=-135-இலிருந்து 10y+6x=12-ஐக் கழிக்கவும்.
-15x-6x=-135-12
-10y-க்கு 10y-ஐக் கூட்டவும். விதிகள் 10y மற்றும் -10y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-21x=-135-12
-6x-க்கு -15x-ஐக் கூட்டவும்.
-21x=-147
-12-க்கு -135-ஐக் கூட்டவும்.
x=7
இரு பக்கங்களையும் -21-ஆல் வகுக்கவும்.
5y+3\times 7=6
5y+3x=6-இல் x-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
5y+21=6
7-ஐ 3 முறை பெருக்கவும்.
5y=-15
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 21-ஐக் கழிக்கவும்.
y=-3
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
y=-3,x=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}