பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
y, x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2y-2x=-40,2y+3x=10
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2y-2x=-40
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
2y=2x-40
சமன்பாட்டின் இரு பக்கங்களிலும் 2x-ஐக் கூட்டவும்.
y=\frac{1}{2}\left(2x-40\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
y=x-20
-40+2x-ஐ \frac{1}{2} முறை பெருக்கவும்.
2\left(x-20\right)+3x=10
பிற சமன்பாடு 2y+3x=10-இல் y-க்கு x-20-ஐப் பிரதியிடவும்.
2x-40+3x=10
x-20-ஐ 2 முறை பெருக்கவும்.
5x-40=10
3x-க்கு 2x-ஐக் கூட்டவும்.
5x=50
சமன்பாட்டின் இரு பக்கங்களிலும் 40-ஐக் கூட்டவும்.
x=10
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
y=10-20
y=x-20-இல் x-க்கு 10-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=-10
10-க்கு -20-ஐக் கூட்டவும்.
y=-10,x=10
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2y-2x=-40,2y+3x=10
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-40\\10\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}2&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
\left(\begin{matrix}2&-2\\2&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-40\\10\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-2\times 2\right)}&-\frac{-2}{2\times 3-\left(-2\times 2\right)}\\-\frac{2}{2\times 3-\left(-2\times 2\right)}&\frac{2}{2\times 3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-40\\10\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-40\\10\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\left(-40\right)+\frac{1}{5}\times 10\\-\frac{1}{5}\left(-40\right)+\frac{1}{5}\times 10\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=-10,x=10
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
2y-2x=-40,2y+3x=10
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2y-2y-2x-3x=-40-10
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2y-2x=-40-இலிருந்து 2y+3x=10-ஐக் கழிக்கவும்.
-2x-3x=-40-10
-2y-க்கு 2y-ஐக் கூட்டவும். விதிகள் 2y மற்றும் -2y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-5x=-40-10
-3x-க்கு -2x-ஐக் கூட்டவும்.
-5x=-50
-10-க்கு -40-ஐக் கூட்டவும்.
x=10
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
2y+3\times 10=10
2y+3x=10-இல் x-க்கு 10-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
2y+30=10
10-ஐ 3 முறை பெருக்கவும்.
2y=-20
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 30-ஐக் கழிக்கவும்.
y=-10
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
y=-10,x=10
இப்போது அமைப்பு சரிசெய்யப்பட்டது.