பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x-5y=10,4x+y=15
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x-5y=10
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=5y+10
சமன்பாட்டின் இரு பக்கங்களிலும் 5y-ஐக் கூட்டவும்.
x=\frac{1}{2}\left(5y+10\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=\frac{5}{2}y+5
10+5y-ஐ \frac{1}{2} முறை பெருக்கவும்.
4\left(\frac{5}{2}y+5\right)+y=15
பிற சமன்பாடு 4x+y=15-இல் x-க்கு 5+\frac{5y}{2}-ஐப் பிரதியிடவும்.
10y+20+y=15
5+\frac{5y}{2}-ஐ 4 முறை பெருக்கவும்.
11y+20=15
y-க்கு 10y-ஐக் கூட்டவும்.
11y=-5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 20-ஐக் கழிக்கவும்.
y=-\frac{5}{11}
இரு பக்கங்களையும் 11-ஆல் வகுக்கவும்.
x=\frac{5}{2}\left(-\frac{5}{11}\right)+5
x=\frac{5}{2}y+5-இல் y-க்கு -\frac{5}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{25}{22}+5
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{5}{11}-ஐ \frac{5}{2} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{85}{22}
-\frac{25}{22}-க்கு 5-ஐக் கூட்டவும்.
x=\frac{85}{22},y=-\frac{5}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x-5y=10,4x+y=15
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\15\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\times 4\right)}&-\frac{-5}{2-\left(-5\times 4\right)}\\-\frac{4}{2-\left(-5\times 4\right)}&\frac{2}{2-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}10\\15\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{5}{22}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}10\\15\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}\times 10+\frac{5}{22}\times 15\\-\frac{2}{11}\times 10+\frac{1}{11}\times 15\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{85}{22}\\-\frac{5}{11}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{85}{22},y=-\frac{5}{11}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x-5y=10,4x+y=15
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4\times 2x+4\left(-5\right)y=4\times 10,2\times 4x+2y=2\times 15
2x மற்றும் 4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
8x-20y=40,8x+2y=30
எளிமையாக்கவும்.
8x-8x-20y-2y=40-30
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 8x-20y=40-இலிருந்து 8x+2y=30-ஐக் கழிக்கவும்.
-20y-2y=40-30
-8x-க்கு 8x-ஐக் கூட்டவும். விதிகள் 8x மற்றும் -8x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-22y=40-30
-2y-க்கு -20y-ஐக் கூட்டவும்.
-22y=10
-30-க்கு 40-ஐக் கூட்டவும்.
y=-\frac{5}{11}
இரு பக்கங்களையும் -22-ஆல் வகுக்கவும்.
4x-\frac{5}{11}=15
4x+y=15-இல் y-க்கு -\frac{5}{11}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
4x=\frac{170}{11}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{5}{11}-ஐக் கூட்டவும்.
x=\frac{85}{22}
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{85}{22},y=-\frac{5}{11}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.