பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x+y=-1,-x-y=-5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x+y=-1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=-y-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-y-1\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-\frac{1}{2}y-\frac{1}{2}
-y-1-ஐ \frac{1}{2} முறை பெருக்கவும்.
-\left(-\frac{1}{2}y-\frac{1}{2}\right)-y=-5
பிற சமன்பாடு -x-y=-5-இல் x-க்கு \frac{-y-1}{2}-ஐப் பிரதியிடவும்.
\frac{1}{2}y+\frac{1}{2}-y=-5
\frac{-y-1}{2}-ஐ -1 முறை பெருக்கவும்.
-\frac{1}{2}y+\frac{1}{2}=-5
-y-க்கு \frac{y}{2}-ஐக் கூட்டவும்.
-\frac{1}{2}y=-\frac{11}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{2}-ஐக் கழிக்கவும்.
y=11
இரு பக்கங்களையும் -2-ஆல் பெருக்கவும்.
x=-\frac{1}{2}\times 11-\frac{1}{2}
x=-\frac{1}{2}y-\frac{1}{2}-இல் y-க்கு 11-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-11-1}{2}
11-ஐ -\frac{1}{2} முறை பெருக்கவும்.
x=-6
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{11}{2} உடன் -\frac{1}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-6,y=11
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x+y=-1,-x-y=-5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&1\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&1\\-1&-1\end{matrix}\right))\left(\begin{matrix}2&1\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&-1\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
\left(\begin{matrix}2&1\\-1&-1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&-1\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&-1\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-1\right)}&-\frac{1}{2\left(-1\right)-\left(-1\right)}\\-\frac{-1}{2\left(-1\right)-\left(-1\right)}&\frac{2}{2\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\-1&-2\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1-5\\-\left(-1\right)-2\left(-5\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\11\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-6,y=11
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x+y=-1,-x-y=-5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-2x-y=-\left(-1\right),2\left(-1\right)x+2\left(-1\right)y=2\left(-5\right)
2x மற்றும் -x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
-2x-y=1,-2x-2y=-10
எளிமையாக்கவும்.
-2x+2x-y+2y=1+10
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -2x-y=1-இலிருந்து -2x-2y=-10-ஐக் கழிக்கவும்.
-y+2y=1+10
2x-க்கு -2x-ஐக் கூட்டவும். விதிகள் -2x மற்றும் 2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
y=1+10
2y-க்கு -y-ஐக் கூட்டவும்.
y=11
10-க்கு 1-ஐக் கூட்டவும்.
-x-11=-5
-x-y=-5-இல் y-க்கு 11-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-x=6
சமன்பாட்டின் இரு பக்கங்களிலும் 11-ஐக் கூட்டவும்.
x=-6
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x=-6,y=11
இப்போது அமைப்பு சரிசெய்யப்பட்டது.