பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x+4y=-4,2x+y=8
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2x+4y=-4
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
2x=-4y-4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-4y-4\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=-2y-2
-4y-4-ஐ \frac{1}{2} முறை பெருக்கவும்.
2\left(-2y-2\right)+y=8
பிற சமன்பாடு 2x+y=8-இல் x-க்கு -2y-2-ஐப் பிரதியிடவும்.
-4y-4+y=8
-2y-2-ஐ 2 முறை பெருக்கவும்.
-3y-4=8
y-க்கு -4y-ஐக் கூட்டவும்.
-3y=12
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.
y=-4
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
x=-2\left(-4\right)-2
x=-2y-2-இல் y-க்கு -4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=8-2
-4-ஐ -2 முறை பெருக்கவும்.
x=6
8-க்கு -2-ஐக் கூட்டவும்.
x=6,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x+4y=-4,2x+y=8
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\8\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}2&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
\left(\begin{matrix}2&4\\2&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4\times 2}&-\frac{4}{2-4\times 2}\\-\frac{2}{2-4\times 2}&\frac{2}{2-4\times 2}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\left(-4\right)+\frac{2}{3}\times 8\\\frac{1}{3}\left(-4\right)-\frac{1}{3}\times 8\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=6,y=-4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x+4y=-4,2x+y=8
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2x-2x+4y-y=-4-8
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2x+4y=-4-இலிருந்து 2x+y=8-ஐக் கழிக்கவும்.
4y-y=-4-8
-2x-க்கு 2x-ஐக் கூட்டவும். விதிகள் 2x மற்றும் -2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
3y=-4-8
-y-க்கு 4y-ஐக் கூட்டவும்.
3y=-12
-8-க்கு -4-ஐக் கூட்டவும்.
y=-4
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
2x-4=8
2x+y=8-இல் y-க்கு -4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
2x=12
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.
x=6
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=6,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.