பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
n, m-க்காகத் தீர்க்கவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2n-3m=1,n+m=3
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2n-3m=1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் n-ஐத் தனிப்படுத்தி n-க்காக இதைத் தீர்க்கவும்.
2n=3m+1
சமன்பாட்டின் இரு பக்கங்களிலும் 3m-ஐக் கூட்டவும்.
n=\frac{1}{2}\left(3m+1\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
n=\frac{3}{2}m+\frac{1}{2}
3m+1-ஐ \frac{1}{2} முறை பெருக்கவும்.
\frac{3}{2}m+\frac{1}{2}+m=3
பிற சமன்பாடு n+m=3-இல் n-க்கு \frac{3m+1}{2}-ஐப் பிரதியிடவும்.
\frac{5}{2}m+\frac{1}{2}=3
m-க்கு \frac{3m}{2}-ஐக் கூட்டவும்.
\frac{5}{2}m=\frac{5}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{2}-ஐக் கழிக்கவும்.
m=1
சமன்பாட்டின் இரு பக்கங்களையும் \frac{5}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
n=\frac{3+1}{2}
n=\frac{3}{2}m+\frac{1}{2}-இல் m-க்கு 1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக n-க்குத் தீர்க்கலாம்.
n=2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{3}{2} உடன் \frac{1}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
n=2,m=1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2n-3m=1,n+m=3
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}n\\m\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}n\\m\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}n\\m\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{3}{5}\times 3\\-\frac{1}{5}+\frac{2}{5}\times 3\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
n=2,m=1
அணிக் கூறுகள் n மற்றும் m-ஐப் பிரித்தெடுக்கவும்.
2n-3m=1,n+m=3
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2n-3m=1,2n+2m=2\times 3
2n மற்றும் n-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
2n-3m=1,2n+2m=6
எளிமையாக்கவும்.
2n-2n-3m-2m=1-6
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2n-3m=1-இலிருந்து 2n+2m=6-ஐக் கழிக்கவும்.
-3m-2m=1-6
-2n-க்கு 2n-ஐக் கூட்டவும். விதிகள் 2n மற்றும் -2n ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-5m=1-6
-2m-க்கு -3m-ஐக் கூட்டவும்.
-5m=-5
-6-க்கு 1-ஐக் கூட்டவும்.
m=1
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
n+1=3
n+m=3-இல் m-க்கு 1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக n-க்குத் தீர்க்கலாம்.
n=2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும்.
n=2,m=1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.