m, n-க்காகத் தீர்க்கவும்
m = \frac{8}{5} = 1\frac{3}{5} = 1.6
n = \frac{7}{5} = 1\frac{2}{5} = 1.4
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2m-3n=-1,m+n=3
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2m-3n=-1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் m-ஐத் தனிப்படுத்தி m-க்காக இதைத் தீர்க்கவும்.
2m=3n-1
சமன்பாட்டின் இரு பக்கங்களிலும் 3n-ஐக் கூட்டவும்.
m=\frac{1}{2}\left(3n-1\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
m=\frac{3}{2}n-\frac{1}{2}
3n-1-ஐ \frac{1}{2} முறை பெருக்கவும்.
\frac{3}{2}n-\frac{1}{2}+n=3
பிற சமன்பாடு m+n=3-இல் m-க்கு \frac{3n-1}{2}-ஐப் பிரதியிடவும்.
\frac{5}{2}n-\frac{1}{2}=3
n-க்கு \frac{3n}{2}-ஐக் கூட்டவும்.
\frac{5}{2}n=\frac{7}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{1}{2}-ஐக் கூட்டவும்.
n=\frac{7}{5}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{5}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
m=\frac{3}{2}\times \frac{7}{5}-\frac{1}{2}
m=\frac{3}{2}n-\frac{1}{2}-இல் n-க்கு \frac{7}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக m-க்குத் தீர்க்கலாம்.
m=\frac{21}{10}-\frac{1}{2}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{7}{5}-ஐ \frac{3}{2} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
m=\frac{8}{5}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{21}{10} உடன் -\frac{1}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
m=\frac{8}{5},n=\frac{7}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2m-3n=-1,m+n=3
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-1\right)+\frac{3}{5}\times 3\\-\frac{1}{5}\left(-1\right)+\frac{2}{5}\times 3\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\\\frac{7}{5}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
m=\frac{8}{5},n=\frac{7}{5}
அணிக் கூறுகள் m மற்றும் n-ஐப் பிரித்தெடுக்கவும்.
2m-3n=-1,m+n=3
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2m-3n=-1,2m+2n=2\times 3
2m மற்றும் m-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
2m-3n=-1,2m+2n=6
எளிமையாக்கவும்.
2m-2m-3n-2n=-1-6
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2m-3n=-1-இலிருந்து 2m+2n=6-ஐக் கழிக்கவும்.
-3n-2n=-1-6
-2m-க்கு 2m-ஐக் கூட்டவும். விதிகள் 2m மற்றும் -2m ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-5n=-1-6
-2n-க்கு -3n-ஐக் கூட்டவும்.
-5n=-7
-6-க்கு -1-ஐக் கூட்டவும்.
n=\frac{7}{5}
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
m+\frac{7}{5}=3
m+n=3-இல் n-க்கு \frac{7}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக m-க்குத் தீர்க்கலாம்.
m=\frac{8}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{7}{5}-ஐக் கழிக்கவும்.
m=\frac{8}{5},n=\frac{7}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}