பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
a, b-க்காகத் தீர்க்கவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2a+b=5,a+2b=1
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
2a+b=5
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் a-ஐத் தனிப்படுத்தி a-க்காக இதைத் தீர்க்கவும்.
2a=-b+5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் b-ஐக் கழிக்கவும்.
a=\frac{1}{2}\left(-b+5\right)
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
a=-\frac{1}{2}b+\frac{5}{2}
-b+5-ஐ \frac{1}{2} முறை பெருக்கவும்.
-\frac{1}{2}b+\frac{5}{2}+2b=1
பிற சமன்பாடு a+2b=1-இல் a-க்கு \frac{-b+5}{2}-ஐப் பிரதியிடவும்.
\frac{3}{2}b+\frac{5}{2}=1
2b-க்கு -\frac{b}{2}-ஐக் கூட்டவும்.
\frac{3}{2}b=-\frac{3}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5}{2}-ஐக் கழிக்கவும்.
b=-1
சமன்பாட்டின் இரு பக்கங்களையும் \frac{3}{2}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
a=-\frac{1}{2}\left(-1\right)+\frac{5}{2}
a=-\frac{1}{2}b+\frac{5}{2}-இல் b-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக a-க்குத் தீர்க்கலாம்.
a=\frac{1+5}{2}
-1-ஐ -\frac{1}{2} முறை பெருக்கவும்.
a=3
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{1}{2} உடன் \frac{5}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
a=3,b=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2a+b=5,a+2b=1
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}2&1\\1&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}2&1\\1&2\end{matrix}\right))\left(\begin{matrix}2&1\\1&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&2\end{matrix}\right))\left(\begin{matrix}5\\1\end{matrix}\right)
\left(\begin{matrix}2&1\\1&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&2\end{matrix}\right))\left(\begin{matrix}5\\1\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&2\end{matrix}\right))\left(\begin{matrix}5\\1\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-1}&-\frac{1}{2\times 2-1}\\-\frac{1}{2\times 2-1}&\frac{2}{2\times 2-1}\end{matrix}\right)\left(\begin{matrix}5\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{3}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}5\\1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 5-\frac{1}{3}\\-\frac{1}{3}\times 5+\frac{2}{3}\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
a=3,b=-1
அணிக் கூறுகள் a மற்றும் b-ஐப் பிரித்தெடுக்கவும்.
2a+b=5,a+2b=1
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2a+b=5,2a+2\times 2b=2
2a மற்றும் a-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் பெருக்கவும்.
2a+b=5,2a+4b=2
எளிமையாக்கவும்.
2a-2a+b-4b=5-2
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2a+b=5-இலிருந்து 2a+4b=2-ஐக் கழிக்கவும்.
b-4b=5-2
-2a-க்கு 2a-ஐக் கூட்டவும். விதிகள் 2a மற்றும் -2a ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-3b=5-2
-4b-க்கு b-ஐக் கூட்டவும்.
-3b=3
-2-க்கு 5-ஐக் கூட்டவும்.
b=-1
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
a+2\left(-1\right)=1
a+2b=1-இல் b-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக a-க்குத் தீர்க்கலாம்.
a-2=1
-1-ஐ 2 முறை பெருக்கவும்.
a=3
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.
a=3,b=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.