பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

1200x+1600y=18
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
600x+2400y=17
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
1200x+1600y=18,600x+2400y=17
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
1200x+1600y=18
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
1200x=-1600y+18
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 1600y-ஐக் கழிக்கவும்.
x=\frac{1}{1200}\left(-1600y+18\right)
இரு பக்கங்களையும் 1200-ஆல் வகுக்கவும்.
x=-\frac{4}{3}y+\frac{3}{200}
-1600y+18-ஐ \frac{1}{1200} முறை பெருக்கவும்.
600\left(-\frac{4}{3}y+\frac{3}{200}\right)+2400y=17
பிற சமன்பாடு 600x+2400y=17-இல் x-க்கு -\frac{4y}{3}+\frac{3}{200}-ஐப் பிரதியிடவும்.
-800y+9+2400y=17
-\frac{4y}{3}+\frac{3}{200}-ஐ 600 முறை பெருக்கவும்.
1600y+9=17
2400y-க்கு -800y-ஐக் கூட்டவும்.
1600y=8
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 9-ஐக் கழிக்கவும்.
y=\frac{1}{200}
இரு பக்கங்களையும் 1600-ஆல் வகுக்கவும்.
x=-\frac{4}{3}\times \frac{1}{200}+\frac{3}{200}
x=-\frac{4}{3}y+\frac{3}{200}-இல் y-க்கு \frac{1}{200}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{1}{150}+\frac{3}{200}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{1}{200}-ஐ -\frac{4}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{1}{120}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{1}{150} உடன் \frac{3}{200}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{1}{120},y=\frac{1}{200}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
1200x+1600y=18
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
600x+2400y=17
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
1200x+1600y=18,600x+2400y=17
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\17\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}18\\17\end{matrix}\right)
\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}18\\17\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}18\\17\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2400}{1200\times 2400-1600\times 600}&-\frac{1600}{1200\times 2400-1600\times 600}\\-\frac{600}{1200\times 2400-1600\times 600}&\frac{1200}{1200\times 2400-1600\times 600}\end{matrix}\right)\left(\begin{matrix}18\\17\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{800}&-\frac{1}{1200}\\-\frac{1}{3200}&\frac{1}{1600}\end{matrix}\right)\left(\begin{matrix}18\\17\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{800}\times 18-\frac{1}{1200}\times 17\\-\frac{1}{3200}\times 18+\frac{1}{1600}\times 17\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{120}\\\frac{1}{200}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{1}{120},y=\frac{1}{200}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
1200x+1600y=18
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
600x+2400y=17
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
1200x+1600y=18,600x+2400y=17
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
600\times 1200x+600\times 1600y=600\times 18,1200\times 600x+1200\times 2400y=1200\times 17
1200x மற்றும் 600x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 600-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1200-ஆலும் பெருக்கவும்.
720000x+960000y=10800,720000x+2880000y=20400
எளிமையாக்கவும்.
720000x-720000x+960000y-2880000y=10800-20400
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 720000x+960000y=10800-இலிருந்து 720000x+2880000y=20400-ஐக் கழிக்கவும்.
960000y-2880000y=10800-20400
-720000x-க்கு 720000x-ஐக் கூட்டவும். விதிகள் 720000x மற்றும் -720000x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-1920000y=10800-20400
-2880000y-க்கு 960000y-ஐக் கூட்டவும்.
-1920000y=-9600
-20400-க்கு 10800-ஐக் கூட்டவும்.
y=\frac{1}{200}
இரு பக்கங்களையும் -1920000-ஆல் வகுக்கவும்.
600x+2400\times \frac{1}{200}=17
600x+2400y=17-இல் y-க்கு \frac{1}{200}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
600x+12=17
\frac{1}{200}-ஐ 2400 முறை பெருக்கவும்.
600x=5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 12-ஐக் கழிக்கவும்.
x=\frac{1}{120}
இரு பக்கங்களையும் 600-ஆல் வகுக்கவும்.
x=\frac{1}{120},y=\frac{1}{200}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.