பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-x-5y=14,-2x-7y=16
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-x-5y=14
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-x=5y+14
சமன்பாட்டின் இரு பக்கங்களிலும் 5y-ஐக் கூட்டவும்.
x=-\left(5y+14\right)
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x=-5y-14
5y+14-ஐ -1 முறை பெருக்கவும்.
-2\left(-5y-14\right)-7y=16
பிற சமன்பாடு -2x-7y=16-இல் x-க்கு -5y-14-ஐப் பிரதியிடவும்.
10y+28-7y=16
-5y-14-ஐ -2 முறை பெருக்கவும்.
3y+28=16
-7y-க்கு 10y-ஐக் கூட்டவும்.
3y=-12
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 28-ஐக் கழிக்கவும்.
y=-4
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=-5\left(-4\right)-14
x=-5y-14-இல் y-க்கு -4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=20-14
-4-ஐ -5 முறை பெருக்கவும்.
x=6
20-க்கு -14-ஐக் கூட்டவும்.
x=6,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-x-5y=14,-2x-7y=16
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\16\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{-5}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\\-\frac{-2}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{1}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}&-\frac{5}{3}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}\times 14-\frac{5}{3}\times 16\\-\frac{2}{3}\times 14+\frac{1}{3}\times 16\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=6,y=-4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-x-5y=14,-2x-7y=16
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-2\left(-1\right)x-2\left(-5\right)y=-2\times 14,-\left(-2\right)x-\left(-7y\right)=-16
-x மற்றும் -2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -1-ஆலும் பெருக்கவும்.
2x+10y=-28,2x+7y=-16
எளிமையாக்கவும்.
2x-2x+10y-7y=-28+16
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2x+10y=-28-இலிருந்து 2x+7y=-16-ஐக் கழிக்கவும்.
10y-7y=-28+16
-2x-க்கு 2x-ஐக் கூட்டவும். விதிகள் 2x மற்றும் -2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
3y=-28+16
-7y-க்கு 10y-ஐக் கூட்டவும்.
3y=-12
16-க்கு -28-ஐக் கூட்டவும்.
y=-4
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
-2x-7\left(-4\right)=16
-2x-7y=16-இல் y-க்கு -4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-2x+28=16
-4-ஐ -7 முறை பெருக்கவும்.
-2x=-12
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 28-ஐக் கழிக்கவும்.
x=6
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
x=6,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.