x, y-க்காகத் தீர்க்கவும்
x=2
y=-4
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
-9x-y=-14,-x-5y=18
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-9x-y=-14
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-9x=y-14
சமன்பாட்டின் இரு பக்கங்களிலும் y-ஐக் கூட்டவும்.
x=-\frac{1}{9}\left(y-14\right)
இரு பக்கங்களையும் -9-ஆல் வகுக்கவும்.
x=-\frac{1}{9}y+\frac{14}{9}
y-14-ஐ -\frac{1}{9} முறை பெருக்கவும்.
-\left(-\frac{1}{9}y+\frac{14}{9}\right)-5y=18
பிற சமன்பாடு -x-5y=18-இல் x-க்கு \frac{-y+14}{9}-ஐப் பிரதியிடவும்.
\frac{1}{9}y-\frac{14}{9}-5y=18
\frac{-y+14}{9}-ஐ -1 முறை பெருக்கவும்.
-\frac{44}{9}y-\frac{14}{9}=18
-5y-க்கு \frac{y}{9}-ஐக் கூட்டவும்.
-\frac{44}{9}y=\frac{176}{9}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{14}{9}-ஐக் கூட்டவும்.
y=-4
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{44}{9}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{1}{9}\left(-4\right)+\frac{14}{9}
x=-\frac{1}{9}y+\frac{14}{9}-இல் y-க்கு -4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{4+14}{9}
-4-ஐ -\frac{1}{9} முறை பெருக்கவும்.
x=2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{4}{9} உடன் \frac{14}{9}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=2,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-9x-y=-14,-x-5y=18
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\18\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-9&-1\\-1&-5\end{matrix}\right))\left(\begin{matrix}-14\\18\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-9\left(-5\right)-\left(-\left(-1\right)\right)}&-\frac{-1}{-9\left(-5\right)-\left(-\left(-1\right)\right)}\\-\frac{-1}{-9\left(-5\right)-\left(-\left(-1\right)\right)}&-\frac{9}{-9\left(-5\right)-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-14\\18\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{44}&\frac{1}{44}\\\frac{1}{44}&-\frac{9}{44}\end{matrix}\right)\left(\begin{matrix}-14\\18\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{44}\left(-14\right)+\frac{1}{44}\times 18\\\frac{1}{44}\left(-14\right)-\frac{9}{44}\times 18\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=2,y=-4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-9x-y=-14,-x-5y=18
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-\left(-9\right)x-\left(-y\right)=-\left(-14\right),-9\left(-1\right)x-9\left(-5\right)y=-9\times 18
-9x மற்றும் -x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -9-ஆலும் பெருக்கவும்.
9x+y=14,9x+45y=-162
எளிமையாக்கவும்.
9x-9x+y-45y=14+162
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 9x+y=14-இலிருந்து 9x+45y=-162-ஐக் கழிக்கவும்.
y-45y=14+162
-9x-க்கு 9x-ஐக் கூட்டவும். விதிகள் 9x மற்றும் -9x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-44y=14+162
-45y-க்கு y-ஐக் கூட்டவும்.
-44y=176
162-க்கு 14-ஐக் கூட்டவும்.
y=-4
இரு பக்கங்களையும் -44-ஆல் வகுக்கவும்.
-x-5\left(-4\right)=18
-x-5y=18-இல் y-க்கு -4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-x+20=18
-4-ஐ -5 முறை பெருக்கவும்.
-x=-2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 20-ஐக் கழிக்கவும்.
x=2
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x=2,y=-4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}