பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-8x-6y=-10,x-y=17
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-8x-6y=-10
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-8x=6y-10
சமன்பாட்டின் இரு பக்கங்களிலும் 6y-ஐக் கூட்டவும்.
x=-\frac{1}{8}\left(6y-10\right)
இரு பக்கங்களையும் -8-ஆல் வகுக்கவும்.
x=-\frac{3}{4}y+\frac{5}{4}
6y-10-ஐ -\frac{1}{8} முறை பெருக்கவும்.
-\frac{3}{4}y+\frac{5}{4}-y=17
பிற சமன்பாடு x-y=17-இல் x-க்கு \frac{-3y+5}{4}-ஐப் பிரதியிடவும்.
-\frac{7}{4}y+\frac{5}{4}=17
-y-க்கு -\frac{3y}{4}-ஐக் கூட்டவும்.
-\frac{7}{4}y=\frac{63}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{5}{4}-ஐக் கழிக்கவும்.
y=-9
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{7}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{3}{4}\left(-9\right)+\frac{5}{4}
x=-\frac{3}{4}y+\frac{5}{4}-இல் y-க்கு -9-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{27+5}{4}
-9-ஐ -\frac{3}{4} முறை பெருக்கவும்.
x=8
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{27}{4} உடன் \frac{5}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=8,y=-9
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-8x-6y=-10,x-y=17
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\17\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-8\left(-1\right)-\left(-6\right)}&-\frac{-6}{-8\left(-1\right)-\left(-6\right)}\\-\frac{1}{-8\left(-1\right)-\left(-6\right)}&-\frac{8}{-8\left(-1\right)-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-10\\17\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{3}{7}\\-\frac{1}{14}&-\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}-10\\17\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\left(-10\right)+\frac{3}{7}\times 17\\-\frac{1}{14}\left(-10\right)-\frac{4}{7}\times 17\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-9\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=8,y=-9
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-8x-6y=-10,x-y=17
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-8x-6y=-10,-8x-8\left(-1\right)y=-8\times 17
-8x மற்றும் x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -8-ஆலும் பெருக்கவும்.
-8x-6y=-10,-8x+8y=-136
எளிமையாக்கவும்.
-8x+8x-6y-8y=-10+136
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -8x-6y=-10-இலிருந்து -8x+8y=-136-ஐக் கழிக்கவும்.
-6y-8y=-10+136
8x-க்கு -8x-ஐக் கூட்டவும். விதிகள் -8x மற்றும் 8x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-14y=-10+136
-8y-க்கு -6y-ஐக் கூட்டவும்.
-14y=126
136-க்கு -10-ஐக் கூட்டவும்.
y=-9
இரு பக்கங்களையும் -14-ஆல் வகுக்கவும்.
x-\left(-9\right)=17
x-y=17-இல் y-க்கு -9-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=8
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 9-ஐக் கழிக்கவும்.
x=8,y=-9
இப்போது அமைப்பு சரிசெய்யப்பட்டது.