பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-5x-8y=8,-5x+6y=-6
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-5x-8y=8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-5x=8y+8
சமன்பாட்டின் இரு பக்கங்களிலும் 8y-ஐக் கூட்டவும்.
x=-\frac{1}{5}\left(8y+8\right)
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
x=-\frac{8}{5}y-\frac{8}{5}
8+8y-ஐ -\frac{1}{5} முறை பெருக்கவும்.
-5\left(-\frac{8}{5}y-\frac{8}{5}\right)+6y=-6
பிற சமன்பாடு -5x+6y=-6-இல் x-க்கு \frac{-8y-8}{5}-ஐப் பிரதியிடவும்.
8y+8+6y=-6
\frac{-8y-8}{5}-ஐ -5 முறை பெருக்கவும்.
14y+8=-6
6y-க்கு 8y-ஐக் கூட்டவும்.
14y=-14
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும்.
y=-1
இரு பக்கங்களையும் 14-ஆல் வகுக்கவும்.
x=-\frac{8}{5}\left(-1\right)-\frac{8}{5}
x=-\frac{8}{5}y-\frac{8}{5}-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{8-8}{5}
-1-ஐ -\frac{8}{5} முறை பெருக்கவும்.
x=0
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{8}{5} உடன் -\frac{8}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=0,y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-5x-8y=8,-5x+6y=-6
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-6\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}8\\-6\end{matrix}\right)
\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}8\\-6\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}8\\-6\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-5\times 6-\left(-8\left(-5\right)\right)}&-\frac{-8}{-5\times 6-\left(-8\left(-5\right)\right)}\\-\frac{-5}{-5\times 6-\left(-8\left(-5\right)\right)}&-\frac{5}{-5\times 6-\left(-8\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\-6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{35}&-\frac{4}{35}\\-\frac{1}{14}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}8\\-6\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{35}\times 8-\frac{4}{35}\left(-6\right)\\-\frac{1}{14}\times 8+\frac{1}{14}\left(-6\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=0,y=-1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-5x-8y=8,-5x+6y=-6
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-5x+5x-8y-6y=8+6
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -5x-8y=8-இலிருந்து -5x+6y=-6-ஐக் கழிக்கவும்.
-8y-6y=8+6
5x-க்கு -5x-ஐக் கூட்டவும். விதிகள் -5x மற்றும் 5x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-14y=8+6
-6y-க்கு -8y-ஐக் கூட்டவும்.
-14y=14
6-க்கு 8-ஐக் கூட்டவும்.
y=-1
இரு பக்கங்களையும் -14-ஆல் வகுக்கவும்.
-5x+6\left(-1\right)=-6
-5x+6y=-6-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-5x-6=-6
-1-ஐ 6 முறை பெருக்கவும்.
-5x=0
சமன்பாட்டின் இரு பக்கங்களிலும் 6-ஐக் கூட்டவும்.
x=0
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
x=0,y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.