பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-4x+3y=-5,-7x+3y=-20
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-4x+3y=-5
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-4x=-3y-5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x=-\frac{1}{4}\left(-3y-5\right)
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
x=\frac{3}{4}y+\frac{5}{4}
-3y-5-ஐ -\frac{1}{4} முறை பெருக்கவும்.
-7\left(\frac{3}{4}y+\frac{5}{4}\right)+3y=-20
பிற சமன்பாடு -7x+3y=-20-இல் x-க்கு \frac{3y+5}{4}-ஐப் பிரதியிடவும்.
-\frac{21}{4}y-\frac{35}{4}+3y=-20
\frac{3y+5}{4}-ஐ -7 முறை பெருக்கவும்.
-\frac{9}{4}y-\frac{35}{4}=-20
3y-க்கு -\frac{21y}{4}-ஐக் கூட்டவும்.
-\frac{9}{4}y=-\frac{45}{4}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{35}{4}-ஐக் கூட்டவும்.
y=5
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{9}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{3}{4}\times 5+\frac{5}{4}
x=\frac{3}{4}y+\frac{5}{4}-இல் y-க்கு 5-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{15+5}{4}
5-ஐ \frac{3}{4} முறை பெருக்கவும்.
x=5
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{15}{4} உடன் \frac{5}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=5,y=5
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-4x+3y=-5,-7x+3y=-20
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-20\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&3\\-7&3\end{matrix}\right))\left(\begin{matrix}-5\\-20\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-4\times 3-3\left(-7\right)}&-\frac{3}{-4\times 3-3\left(-7\right)}\\-\frac{-7}{-4\times 3-3\left(-7\right)}&-\frac{4}{-4\times 3-3\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-5\\-20\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{7}{9}&-\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}-5\\-20\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-5\right)-\frac{1}{3}\left(-20\right)\\\frac{7}{9}\left(-5\right)-\frac{4}{9}\left(-20\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=5,y=5
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-4x+3y=-5,-7x+3y=-20
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-4x+7x+3y-3y=-5+20
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -4x+3y=-5-இலிருந்து -7x+3y=-20-ஐக் கழிக்கவும்.
-4x+7x=-5+20
-3y-க்கு 3y-ஐக் கூட்டவும். விதிகள் 3y மற்றும் -3y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
3x=-5+20
7x-க்கு -4x-ஐக் கூட்டவும்.
3x=15
20-க்கு -5-ஐக் கூட்டவும்.
x=5
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
-7\times 5+3y=-20
-7x+3y=-20-இல் x-க்கு 5-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
-35+3y=-20
5-ஐ -7 முறை பெருக்கவும்.
3y=15
சமன்பாட்டின் இரு பக்கங்களிலும் 35-ஐக் கூட்டவும்.
y=5
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=5,y=5
இப்போது அமைப்பு சரிசெய்யப்பட்டது.