பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-3x+y=8,-8x+2y=20
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-3x+y=8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-3x=-y+8
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
x=-\frac{1}{3}\left(-y+8\right)
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
x=\frac{1}{3}y-\frac{8}{3}
-y+8-ஐ -\frac{1}{3} முறை பெருக்கவும்.
-8\left(\frac{1}{3}y-\frac{8}{3}\right)+2y=20
பிற சமன்பாடு -8x+2y=20-இல் x-க்கு \frac{-8+y}{3}-ஐப் பிரதியிடவும்.
-\frac{8}{3}y+\frac{64}{3}+2y=20
\frac{-8+y}{3}-ஐ -8 முறை பெருக்கவும்.
-\frac{2}{3}y+\frac{64}{3}=20
2y-க்கு -\frac{8y}{3}-ஐக் கூட்டவும்.
-\frac{2}{3}y=-\frac{4}{3}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{64}{3}-ஐக் கழிக்கவும்.
y=2
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{2}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{1}{3}\times 2-\frac{8}{3}
x=\frac{1}{3}y-\frac{8}{3}-இல் y-க்கு 2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{2-8}{3}
2-ஐ \frac{1}{3} முறை பெருக்கவும்.
x=-2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{2}{3} உடன் -\frac{8}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-2,y=2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-3x+y=8,-8x+2y=20
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\20\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-8&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-3\times 2-\left(-8\right)}&-\frac{1}{-3\times 2-\left(-8\right)}\\-\frac{-8}{-3\times 2-\left(-8\right)}&-\frac{3}{-3\times 2-\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{2}\\4&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8-\frac{1}{2}\times 20\\4\times 8-\frac{3}{2}\times 20\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-2,y=2
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-3x+y=8,-8x+2y=20
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-8\left(-3\right)x-8y=-8\times 8,-3\left(-8\right)x-3\times 2y=-3\times 20
-3x மற்றும் -8x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -8-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -3-ஆலும் பெருக்கவும்.
24x-8y=-64,24x-6y=-60
எளிமையாக்கவும்.
24x-24x-8y+6y=-64+60
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 24x-8y=-64-இலிருந்து 24x-6y=-60-ஐக் கழிக்கவும்.
-8y+6y=-64+60
-24x-க்கு 24x-ஐக் கூட்டவும். விதிகள் 24x மற்றும் -24x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-2y=-64+60
6y-க்கு -8y-ஐக் கூட்டவும்.
-2y=-4
60-க்கு -64-ஐக் கூட்டவும்.
y=2
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
-8x+2\times 2=20
-8x+2y=20-இல் y-க்கு 2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-8x+4=20
2-ஐ 2 முறை பெருக்கவும்.
-8x=16
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும்.
x=-2
இரு பக்கங்களையும் -8-ஆல் வகுக்கவும்.
x=-2,y=2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.