பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-3x+y=1,-3x+2y=5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-3x+y=1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-3x=-y+1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
x=-\frac{1}{3}\left(-y+1\right)
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
x=\frac{1}{3}y-\frac{1}{3}
-y+1-ஐ -\frac{1}{3} முறை பெருக்கவும்.
-3\left(\frac{1}{3}y-\frac{1}{3}\right)+2y=5
பிற சமன்பாடு -3x+2y=5-இல் x-க்கு \frac{-1+y}{3}-ஐப் பிரதியிடவும்.
-y+1+2y=5
\frac{-1+y}{3}-ஐ -3 முறை பெருக்கவும்.
y+1=5
2y-க்கு -y-ஐக் கூட்டவும்.
y=4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும்.
x=\frac{1}{3}\times 4-\frac{1}{3}
x=\frac{1}{3}y-\frac{1}{3}-இல் y-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{4-1}{3}
4-ஐ \frac{1}{3} முறை பெருக்கவும்.
x=1
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{4}{3} உடன் -\frac{1}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=1,y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-3x+y=1,-3x+2y=5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-3\times 2-\left(-3\right)}&-\frac{1}{-3\times 2-\left(-3\right)}\\-\frac{-3}{-3\times 2-\left(-3\right)}&-\frac{3}{-3\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{3}\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}+\frac{1}{3}\times 5\\-1+5\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-3x+y=1,-3x+2y=5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-3x+3x+y-2y=1-5
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -3x+y=1-இலிருந்து -3x+2y=5-ஐக் கழிக்கவும்.
y-2y=1-5
3x-க்கு -3x-ஐக் கூட்டவும். விதிகள் -3x மற்றும் 3x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-y=1-5
-2y-க்கு y-ஐக் கூட்டவும்.
-y=-4
-5-க்கு 1-ஐக் கூட்டவும்.
y=4
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
-3x+2\times 4=5
-3x+2y=5-இல் y-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-3x+8=5
4-ஐ 2 முறை பெருக்கவும்.
-3x=-3
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும்.
x=1
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
x=1,y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.