t, k-க்காகத் தீர்க்கவும்
t=1.21
k=1.8
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
11\times 11=100t
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி t ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் t,11-இன் சிறிய பொது பெருக்கியான 11t-ஆல் பெருக்கவும்.
121=100t
11 மற்றும் 11-ஐப் பெருக்கவும், தீர்வு 121.
100t=121
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
t=\frac{121}{100}
இரு பக்கங்களையும் 100-ஆல் வகுக்கவும்.
\frac{3}{7}\times 4.2=k
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களையும் 4.2-ஆல் பெருக்கவும்.
\frac{9}{5}=k
\frac{3}{7} மற்றும் 4.2-ஐப் பெருக்கவும், தீர்வு \frac{9}{5}.
k=\frac{9}{5}
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
t=\frac{121}{100} k=\frac{9}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}