n, o, p, q, r-க்காகத் தீர்க்கவும்
r=2
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
8\times 36=9n
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டின் இரண்டு பக்கங்களிலும் 126,112-இன் சிறிய பொது பெருக்கியான 1008-ஆல் பெருக்கவும்.
288=9n
8 மற்றும் 36-ஐப் பெருக்கவும், தீர்வு 288.
9n=288
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
n=\frac{288}{9}
இரு பக்கங்களையும் 9-ஆல் வகுக்கவும்.
n=32
32-ஐப் பெற, 9-ஐ 288-ஆல் வகுக்கவும்.
o=2
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். 1 மற்றும் 2-ஐப் பெருக்கவும், தீர்வு 2.
p=2
மூன்றாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டில் மாறிகளின் அறியப்பட்ட மதிப்புகளைச் செருகவும்.
q=2
நான்காவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டில் மாறிகளின் அறியப்பட்ட மதிப்புகளைச் செருகவும்.
r=2
ஐந்தாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். சமன்பாட்டில் மாறிகளின் அறியப்பட்ட மதிப்புகளைச் செருகவும்.
n=32 o=2 p=2 q=2 r=2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}