பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x-3y=2
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x-5=4y-20
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். 4-ஐ y-5-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x-5-4y=-20
இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
x-4y=-20+5
இரண்டு பக்கங்களிலும் 5-ஐச் சேர்க்கவும்.
x-4y=-15
-20 மற்றும் 5-ஐக் கூட்டவும், தீர்வு -15.
x-3y=2,x-4y=-15
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x-3y=2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=3y+2
சமன்பாட்டின் இரு பக்கங்களிலும் 3y-ஐக் கூட்டவும்.
3y+2-4y=-15
பிற சமன்பாடு x-4y=-15-இல் x-க்கு 3y+2-ஐப் பிரதியிடவும்.
-y+2=-15
-4y-க்கு 3y-ஐக் கூட்டவும்.
-y=-17
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
y=17
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x=3\times 17+2
x=3y+2-இல் y-க்கு 17-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=51+2
17-ஐ 3 முறை பெருக்கவும்.
x=53
51-க்கு 2-ஐக் கூட்டவும்.
x=53,y=17
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x-3y=2
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x-5=4y-20
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். 4-ஐ y-5-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x-5-4y=-20
இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
x-4y=-20+5
இரண்டு பக்கங்களிலும் 5-ஐச் சேர்க்கவும்.
x-4y=-15
-20 மற்றும் 5-ஐக் கூட்டவும், தீர்வு -15.
x-3y=2,x-4y=-15
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-15\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right))\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right))\left(\begin{matrix}2\\-15\end{matrix}\right)
\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right))\left(\begin{matrix}2\\-15\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right))\left(\begin{matrix}2\\-15\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-3\right)}&-\frac{-3}{-4-\left(-3\right)}\\-\frac{1}{-4-\left(-3\right)}&\frac{1}{-4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\-15\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-3\\1&-1\end{matrix}\right)\left(\begin{matrix}2\\-15\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 2-3\left(-15\right)\\2-\left(-15\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}53\\17\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=53,y=17
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x-3y=2
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x-5=4y-20
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். 4-ஐ y-5-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x-5-4y=-20
இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
x-4y=-20+5
இரண்டு பக்கங்களிலும் 5-ஐச் சேர்க்கவும்.
x-4y=-15
-20 மற்றும் 5-ஐக் கூட்டவும், தீர்வு -15.
x-3y=2,x-4y=-15
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
x-x-3y+4y=2+15
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் x-3y=2-இலிருந்து x-4y=-15-ஐக் கழிக்கவும்.
-3y+4y=2+15
-x-க்கு x-ஐக் கூட்டவும். விதிகள் x மற்றும் -x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
y=2+15
4y-க்கு -3y-ஐக் கூட்டவும்.
y=17
15-க்கு 2-ஐக் கூட்டவும்.
x-4\times 17=-15
x-4y=-15-இல் y-க்கு 17-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x-68=-15
17-ஐ -4 முறை பெருக்கவும்.
x=53
சமன்பாட்டின் இரு பக்கங்களிலும் 68-ஐக் கூட்டவும்.
x=53,y=17
இப்போது அமைப்பு சரிசெய்யப்பட்டது.