x, y-க்காகத் தீர்க்கவும்
x = \frac{1683}{38} = 44\frac{11}{38} \approx 44.289473684
y = \frac{749}{38} = 19\frac{27}{38} \approx 19.710526316
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
x+y=64,12x-26y=19
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+y=64
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-y+64
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
12\left(-y+64\right)-26y=19
பிற சமன்பாடு 12x-26y=19-இல் x-க்கு -y+64-ஐப் பிரதியிடவும்.
-12y+768-26y=19
-y+64-ஐ 12 முறை பெருக்கவும்.
-38y+768=19
-26y-க்கு -12y-ஐக் கூட்டவும்.
-38y=-749
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 768-ஐக் கழிக்கவும்.
y=\frac{749}{38}
இரு பக்கங்களையும் -38-ஆல் வகுக்கவும்.
x=-\frac{749}{38}+64
x=-y+64-இல் y-க்கு \frac{749}{38}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{1683}{38}
-\frac{749}{38}-க்கு 64-ஐக் கூட்டவும்.
x=\frac{1683}{38},y=\frac{749}{38}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+y=64,12x-26y=19
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&1\\12&-26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\19\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}1&1\\12&-26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
\left(\begin{matrix}1&1\\12&-26\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{26}{-26-12}&-\frac{1}{-26-12}\\-\frac{12}{-26-12}&\frac{1}{-26-12}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&\frac{1}{38}\\\frac{6}{19}&-\frac{1}{38}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\times 64+\frac{1}{38}\times 19\\\frac{6}{19}\times 64-\frac{1}{38}\times 19\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1683}{38}\\\frac{749}{38}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{1683}{38},y=\frac{749}{38}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+y=64,12x-26y=19
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
12x+12y=12\times 64,12x-26y=19
x மற்றும் 12x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 12-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
12x+12y=768,12x-26y=19
எளிமையாக்கவும்.
12x-12x+12y+26y=768-19
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 12x+12y=768-இலிருந்து 12x-26y=19-ஐக் கழிக்கவும்.
12y+26y=768-19
-12x-க்கு 12x-ஐக் கூட்டவும். விதிகள் 12x மற்றும் -12x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
38y=768-19
26y-க்கு 12y-ஐக் கூட்டவும்.
38y=749
-19-க்கு 768-ஐக் கூட்டவும்.
y=\frac{749}{38}
இரு பக்கங்களையும் 38-ஆல் வகுக்கவும்.
12x-26\times \frac{749}{38}=19
12x-26y=19-இல் y-க்கு \frac{749}{38}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
12x-\frac{9737}{19}=19
\frac{749}{38}-ஐ -26 முறை பெருக்கவும்.
12x=\frac{10098}{19}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{9737}{19}-ஐக் கூட்டவும்.
x=\frac{1683}{38}
இரு பக்கங்களையும் 12-ஆல் வகுக்கவும்.
x=\frac{1683}{38},y=\frac{749}{38}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}