பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x+y=64,12x+26y=19
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+y=64
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-y+64
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
12\left(-y+64\right)+26y=19
பிற சமன்பாடு 12x+26y=19-இல் x-க்கு -y+64-ஐப் பிரதியிடவும்.
-12y+768+26y=19
-y+64-ஐ 12 முறை பெருக்கவும்.
14y+768=19
26y-க்கு -12y-ஐக் கூட்டவும்.
14y=-749
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 768-ஐக் கழிக்கவும்.
y=-\frac{107}{2}
இரு பக்கங்களையும் 14-ஆல் வகுக்கவும்.
x=-\left(-\frac{107}{2}\right)+64
x=-y+64-இல் y-க்கு -\frac{107}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{107}{2}+64
-\frac{107}{2}-ஐ -1 முறை பெருக்கவும்.
x=\frac{235}{2}
\frac{107}{2}-க்கு 64-ஐக் கூட்டவும்.
x=\frac{235}{2},y=-\frac{107}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+y=64,12x+26y=19
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\19\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}1&1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
\left(\begin{matrix}1&1\\12&26\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{26}{26-12}&-\frac{1}{26-12}\\-\frac{12}{26-12}&\frac{1}{26-12}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{7}&-\frac{1}{14}\\-\frac{6}{7}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{7}\times 64-\frac{1}{14}\times 19\\-\frac{6}{7}\times 64+\frac{1}{14}\times 19\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{235}{2}\\-\frac{107}{2}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{235}{2},y=-\frac{107}{2}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+y=64,12x+26y=19
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
12x+12y=12\times 64,12x+26y=19
x மற்றும் 12x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 12-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
12x+12y=768,12x+26y=19
எளிமையாக்கவும்.
12x-12x+12y-26y=768-19
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 12x+12y=768-இலிருந்து 12x+26y=19-ஐக் கழிக்கவும்.
12y-26y=768-19
-12x-க்கு 12x-ஐக் கூட்டவும். விதிகள் 12x மற்றும் -12x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-14y=768-19
-26y-க்கு 12y-ஐக் கூட்டவும்.
-14y=749
-19-க்கு 768-ஐக் கூட்டவும்.
y=-\frac{107}{2}
இரு பக்கங்களையும் -14-ஆல் வகுக்கவும்.
12x+26\left(-\frac{107}{2}\right)=19
12x+26y=19-இல் y-க்கு -\frac{107}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
12x-1391=19
-\frac{107}{2}-ஐ 26 முறை பெருக்கவும்.
12x=1410
சமன்பாட்டின் இரு பக்கங்களிலும் 1391-ஐக் கூட்டவும்.
x=\frac{235}{2}
இரு பக்கங்களையும் 12-ஆல் வகுக்கவும்.
x=\frac{235}{2},y=-\frac{107}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.