பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

8x+4y=10,4x+9y=30
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
8x+4y=10
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
8x=-4y+10
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
x=\frac{1}{8}\left(-4y+10\right)
இரு பக்கங்களையும் 8-ஆல் வகுக்கவும்.
x=-\frac{1}{2}y+\frac{5}{4}
-4y+10-ஐ \frac{1}{8} முறை பெருக்கவும்.
4\left(-\frac{1}{2}y+\frac{5}{4}\right)+9y=30
பிற சமன்பாடு 4x+9y=30-இல் x-க்கு -\frac{y}{2}+\frac{5}{4}-ஐப் பிரதியிடவும்.
-2y+5+9y=30
-\frac{y}{2}+\frac{5}{4}-ஐ 4 முறை பெருக்கவும்.
7y+5=30
9y-க்கு -2y-ஐக் கூட்டவும்.
7y=25
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 5-ஐக் கழிக்கவும்.
y=\frac{25}{7}
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
x=-\frac{1}{2}\times \frac{25}{7}+\frac{5}{4}
x=-\frac{1}{2}y+\frac{5}{4}-இல் y-க்கு \frac{25}{7}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{25}{14}+\frac{5}{4}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{25}{7}-ஐ -\frac{1}{2} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-\frac{15}{28}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{25}{14} உடன் \frac{5}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-\frac{15}{28},y=\frac{25}{7}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
8x+4y=10,4x+9y=30
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}8&4\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\30\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}8&4\\4&9\end{matrix}\right))\left(\begin{matrix}8&4\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\4&9\end{matrix}\right))\left(\begin{matrix}10\\30\end{matrix}\right)
\left(\begin{matrix}8&4\\4&9\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\4&9\end{matrix}\right))\left(\begin{matrix}10\\30\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\4&9\end{matrix}\right))\left(\begin{matrix}10\\30\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{8\times 9-4\times 4}&-\frac{4}{8\times 9-4\times 4}\\-\frac{4}{8\times 9-4\times 4}&\frac{8}{8\times 9-4\times 4}\end{matrix}\right)\left(\begin{matrix}10\\30\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{56}&-\frac{1}{14}\\-\frac{1}{14}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}10\\30\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{56}\times 10-\frac{1}{14}\times 30\\-\frac{1}{14}\times 10+\frac{1}{7}\times 30\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{28}\\\frac{25}{7}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-\frac{15}{28},y=\frac{25}{7}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
8x+4y=10,4x+9y=30
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4\times 8x+4\times 4y=4\times 10,8\times 4x+8\times 9y=8\times 30
8x மற்றும் 4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 8-ஆலும் பெருக்கவும்.
32x+16y=40,32x+72y=240
எளிமையாக்கவும்.
32x-32x+16y-72y=40-240
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 32x+16y=40-இலிருந்து 32x+72y=240-ஐக் கழிக்கவும்.
16y-72y=40-240
-32x-க்கு 32x-ஐக் கூட்டவும். விதிகள் 32x மற்றும் -32x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-56y=40-240
-72y-க்கு 16y-ஐக் கூட்டவும்.
-56y=-200
-240-க்கு 40-ஐக் கூட்டவும்.
y=\frac{25}{7}
இரு பக்கங்களையும் -56-ஆல் வகுக்கவும்.
4x+9\times \frac{25}{7}=30
4x+9y=30-இல் y-க்கு \frac{25}{7}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
4x+\frac{225}{7}=30
\frac{25}{7}-ஐ 9 முறை பெருக்கவும்.
4x=-\frac{15}{7}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{225}{7}-ஐக் கழிக்கவும்.
x=-\frac{15}{28}
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=-\frac{15}{28},y=\frac{25}{7}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.