பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x+y=5,-2x+2y=7
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
3x+y=5
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
3x=-y+5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
x=\frac{1}{3}\left(-y+5\right)
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=-\frac{1}{3}y+\frac{5}{3}
-y+5-ஐ \frac{1}{3} முறை பெருக்கவும்.
-2\left(-\frac{1}{3}y+\frac{5}{3}\right)+2y=7
பிற சமன்பாடு -2x+2y=7-இல் x-க்கு \frac{-y+5}{3}-ஐப் பிரதியிடவும்.
\frac{2}{3}y-\frac{10}{3}+2y=7
\frac{-y+5}{3}-ஐ -2 முறை பெருக்கவும்.
\frac{8}{3}y-\frac{10}{3}=7
2y-க்கு \frac{2y}{3}-ஐக் கூட்டவும்.
\frac{8}{3}y=\frac{31}{3}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{10}{3}-ஐக் கூட்டவும்.
y=\frac{31}{8}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{8}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{1}{3}\times \frac{31}{8}+\frac{5}{3}
x=-\frac{1}{3}y+\frac{5}{3}-இல் y-க்கு \frac{31}{8}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{31}{24}+\frac{5}{3}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{31}{8}-ஐ -\frac{1}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{3}{8}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{31}{24} உடன் \frac{5}{3}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{3}{8},y=\frac{31}{8}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
3x+y=5,-2x+2y=7
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}3&1\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}3&1\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}3&1\\-2&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\right)}&-\frac{1}{3\times 2-\left(-2\right)}\\-\frac{-2}{3\times 2-\left(-2\right)}&\frac{3}{3\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{8}\\\frac{1}{4}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5-\frac{1}{8}\times 7\\\frac{1}{4}\times 5+\frac{3}{8}\times 7\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\\\frac{31}{8}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{3}{8},y=\frac{31}{8}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
3x+y=5,-2x+2y=7
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-2\times 3x-2y=-2\times 5,3\left(-2\right)x+3\times 2y=3\times 7
3x மற்றும் -2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் பெருக்கவும்.
-6x-2y=-10,-6x+6y=21
எளிமையாக்கவும்.
-6x+6x-2y-6y=-10-21
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -6x-2y=-10-இலிருந்து -6x+6y=21-ஐக் கழிக்கவும்.
-2y-6y=-10-21
6x-க்கு -6x-ஐக் கூட்டவும். விதிகள் -6x மற்றும் 6x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-8y=-10-21
-6y-க்கு -2y-ஐக் கூட்டவும்.
-8y=-31
-21-க்கு -10-ஐக் கூட்டவும்.
y=\frac{31}{8}
இரு பக்கங்களையும் -8-ஆல் வகுக்கவும்.
-2x+2\times \frac{31}{8}=7
-2x+2y=7-இல் y-க்கு \frac{31}{8}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-2x+\frac{31}{4}=7
\frac{31}{8}-ஐ 2 முறை பெருக்கவும்.
-2x=-\frac{3}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{31}{4}-ஐக் கழிக்கவும்.
x=\frac{3}{8}
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
x=\frac{3}{8},y=\frac{31}{8}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.