பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-5x+3y=-8,-x-3y=2
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
-5x+3y=-8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
-5x=-3y-8
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x=-\frac{1}{5}\left(-3y-8\right)
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
x=\frac{3}{5}y+\frac{8}{5}
-3y-8-ஐ -\frac{1}{5} முறை பெருக்கவும்.
-\left(\frac{3}{5}y+\frac{8}{5}\right)-3y=2
பிற சமன்பாடு -x-3y=2-இல் x-க்கு \frac{3y+8}{5}-ஐப் பிரதியிடவும்.
-\frac{3}{5}y-\frac{8}{5}-3y=2
\frac{3y+8}{5}-ஐ -1 முறை பெருக்கவும்.
-\frac{18}{5}y-\frac{8}{5}=2
-3y-க்கு -\frac{3y}{5}-ஐக் கூட்டவும்.
-\frac{18}{5}y=\frac{18}{5}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{8}{5}-ஐக் கூட்டவும்.
y=-1
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{18}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{3}{5}\left(-1\right)+\frac{8}{5}
x=\frac{3}{5}y+\frac{8}{5}-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-3+8}{5}
-1-ஐ \frac{3}{5} முறை பெருக்கவும்.
x=1
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{3}{5} உடன் \frac{8}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=1,y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
-5x+3y=-8,-x-3y=2
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\2\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-5\left(-3\right)-3\left(-1\right)}&-\frac{3}{-5\left(-3\right)-3\left(-1\right)}\\-\frac{-1}{-5\left(-3\right)-3\left(-1\right)}&-\frac{5}{-5\left(-3\right)-3\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&-\frac{1}{6}\\\frac{1}{18}&-\frac{5}{18}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\left(-8\right)-\frac{1}{6}\times 2\\\frac{1}{18}\left(-8\right)-\frac{5}{18}\times 2\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=-1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
-5x+3y=-8,-x-3y=2
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-\left(-5\right)x-3y=-\left(-8\right),-5\left(-1\right)x-5\left(-3\right)y=-5\times 2
-5x மற்றும் -x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -5-ஆலும் பெருக்கவும்.
5x-3y=8,5x+15y=-10
எளிமையாக்கவும்.
5x-5x-3y-15y=8+10
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 5x-3y=8-இலிருந்து 5x+15y=-10-ஐக் கழிக்கவும்.
-3y-15y=8+10
-5x-க்கு 5x-ஐக் கூட்டவும். விதிகள் 5x மற்றும் -5x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-18y=8+10
-15y-க்கு -3y-ஐக் கூட்டவும்.
-18y=18
10-க்கு 8-ஐக் கூட்டவும்.
y=-1
இரு பக்கங்களையும் -18-ஆல் வகுக்கவும்.
-x-3\left(-1\right)=2
-x-3y=2-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-x+3=2
-1-ஐ -3 முறை பெருக்கவும்.
-x=-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3-ஐக் கழிக்கவும்.
x=1
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x=1,y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.