பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
விரி
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
காரணி x^{2}+2x-1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-ஐ x முறை பெருக்கவும்.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} மற்றும் \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)-ஐ விரிக்கவும்.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
-2 மற்றும் 1-ஐக் கூட்டவும், தீர்வு -1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
காரணி x^{2}+2x-1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-ஐ x முறை பெருக்கவும்.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} மற்றும் \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)-ஐ விரிக்கவும்.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
-2 மற்றும் 1-ஐக் கூட்டவும், தீர்வு -1.