பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
y, x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

y-x=-18
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் x-ஐக் கழிக்கவும்.
y-\frac{1}{4}x=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் \frac{1}{4}x-ஐக் கழிக்கவும்.
y-x=-18,y-\frac{1}{4}x=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
y-x=-18
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
y=x-18
சமன்பாட்டின் இரு பக்கங்களிலும் x-ஐக் கூட்டவும்.
x-18-\frac{1}{4}x=0
பிற சமன்பாடு y-\frac{1}{4}x=0-இல் y-க்கு x-18-ஐப் பிரதியிடவும்.
\frac{3}{4}x-18=0
-\frac{x}{4}-க்கு x-ஐக் கூட்டவும்.
\frac{3}{4}x=18
சமன்பாட்டின் இரு பக்கங்களிலும் 18-ஐக் கூட்டவும்.
x=24
சமன்பாட்டின் இரு பக்கங்களையும் \frac{3}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
y=24-18
y=x-18-இல் x-க்கு 24-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=6
24-க்கு -18-ஐக் கூட்டவும்.
y=6,x=24
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
y-x=-18
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் x-ஐக் கழிக்கவும்.
y-\frac{1}{4}x=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் \frac{1}{4}x-ஐக் கழிக்கவும்.
y-x=-18,y-\frac{1}{4}x=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-18\\0\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-18\\0\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-18\\0\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-18\\0\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{4}}{-\frac{1}{4}-\left(-1\right)}&-\frac{-1}{-\frac{1}{4}-\left(-1\right)}\\-\frac{1}{-\frac{1}{4}-\left(-1\right)}&\frac{1}{-\frac{1}{4}-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-18\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{3}\\-\frac{4}{3}&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}-18\\0\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-18\right)\\-\frac{4}{3}\left(-18\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\24\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=6,x=24
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
y-x=-18
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் x-ஐக் கழிக்கவும்.
y-\frac{1}{4}x=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் \frac{1}{4}x-ஐக் கழிக்கவும்.
y-x=-18,y-\frac{1}{4}x=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
y-y-x+\frac{1}{4}x=-18
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் y-x=-18-இலிருந்து y-\frac{1}{4}x=0-ஐக் கழிக்கவும்.
-x+\frac{1}{4}x=-18
-y-க்கு y-ஐக் கூட்டவும். விதிகள் y மற்றும் -y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-\frac{3}{4}x=-18
\frac{x}{4}-க்கு -x-ஐக் கூட்டவும்.
x=24
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{3}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
y-\frac{1}{4}\times 24=0
y-\frac{1}{4}x=0-இல் x-க்கு 24-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y-6=0
24-ஐ -\frac{1}{4} முறை பெருக்கவும்.
y=6
சமன்பாட்டின் இரு பக்கங்களிலும் 6-ஐக் கூட்டவும்.
y=6,x=24
இப்போது அமைப்பு சரிசெய்யப்பட்டது.