பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

2x=3y-3
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். 3-ஐ y-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2x-3y=-3
இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x-y=2,2x-3y=-3
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x-y=2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=y+2
சமன்பாட்டின் இரு பக்கங்களிலும் y-ஐக் கூட்டவும்.
2\left(y+2\right)-3y=-3
பிற சமன்பாடு 2x-3y=-3-இல் x-க்கு y+2-ஐப் பிரதியிடவும்.
2y+4-3y=-3
y+2-ஐ 2 முறை பெருக்கவும்.
-y+4=-3
-3y-க்கு 2y-ஐக் கூட்டவும்.
-y=-7
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும்.
y=7
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x=7+2
x=y+2-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=9
7-க்கு 2-ஐக் கூட்டவும்.
x=9,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
2x=3y-3
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். 3-ஐ y-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2x-3y=-3
இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x-y=2,2x-3y=-3
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-2\right)}&-\frac{-1}{-3-\left(-2\right)}\\-\frac{2}{-3-\left(-2\right)}&\frac{1}{-3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 2-\left(-3\right)\\2\times 2-\left(-3\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=9,y=7
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
2x=3y-3
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். 3-ஐ y-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
2x-3y=-3
இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x-y=2,2x-3y=-3
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2x+2\left(-1\right)y=2\times 2,2x-3y=-3
x மற்றும் 2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
2x-2y=4,2x-3y=-3
எளிமையாக்கவும்.
2x-2x-2y+3y=4+3
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2x-2y=4-இலிருந்து 2x-3y=-3-ஐக் கழிக்கவும்.
-2y+3y=4+3
-2x-க்கு 2x-ஐக் கூட்டவும். விதிகள் 2x மற்றும் -2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
y=4+3
3y-க்கு -2y-ஐக் கூட்டவும்.
y=7
3-க்கு 4-ஐக் கூட்டவும்.
2x-3\times 7=-3
2x-3y=-3-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
2x-21=-3
7-ஐ -3 முறை பெருக்கவும்.
2x=18
சமன்பாட்டின் இரு பக்கங்களிலும் 21-ஐக் கூட்டவும்.
x=9
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=9,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.