\left\{ \begin{array} { l } { x - 7 y = 6 } \\ { 5 x + 3 y = 2 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x=\frac{16}{19}\approx 0.842105263
y=-\frac{14}{19}\approx -0.736842105
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
x-7y=6,5x+3y=2
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x-7y=6
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=7y+6
சமன்பாட்டின் இரு பக்கங்களிலும் 7y-ஐக் கூட்டவும்.
5\left(7y+6\right)+3y=2
பிற சமன்பாடு 5x+3y=2-இல் x-க்கு 7y+6-ஐப் பிரதியிடவும்.
35y+30+3y=2
7y+6-ஐ 5 முறை பெருக்கவும்.
38y+30=2
3y-க்கு 35y-ஐக் கூட்டவும்.
38y=-28
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 30-ஐக் கழிக்கவும்.
y=-\frac{14}{19}
இரு பக்கங்களையும் 38-ஆல் வகுக்கவும்.
x=7\left(-\frac{14}{19}\right)+6
x=7y+6-இல் y-க்கு -\frac{14}{19}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{98}{19}+6
-\frac{14}{19}-ஐ 7 முறை பெருக்கவும்.
x=\frac{16}{19}
-\frac{98}{19}-க்கு 6-ஐக் கூட்டவும்.
x=\frac{16}{19},y=-\frac{14}{19}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x-7y=6,5x+3y=2
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-7\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-7\\5&3\end{matrix}\right))\left(\begin{matrix}1&-7\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
\left(\begin{matrix}1&-7\\5&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-7\times 5\right)}&-\frac{-7}{3-\left(-7\times 5\right)}\\-\frac{5}{3-\left(-7\times 5\right)}&\frac{1}{3-\left(-7\times 5\right)}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{38}&\frac{7}{38}\\-\frac{5}{38}&\frac{1}{38}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{38}\times 6+\frac{7}{38}\times 2\\-\frac{5}{38}\times 6+\frac{1}{38}\times 2\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{19}\\-\frac{14}{19}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{16}{19},y=-\frac{14}{19}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x-7y=6,5x+3y=2
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5x+5\left(-7\right)y=5\times 6,5x+3y=2
x மற்றும் 5x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
5x-35y=30,5x+3y=2
எளிமையாக்கவும்.
5x-5x-35y-3y=30-2
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 5x-35y=30-இலிருந்து 5x+3y=2-ஐக் கழிக்கவும்.
-35y-3y=30-2
-5x-க்கு 5x-ஐக் கூட்டவும். விதிகள் 5x மற்றும் -5x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-38y=30-2
-3y-க்கு -35y-ஐக் கூட்டவும்.
-38y=28
-2-க்கு 30-ஐக் கூட்டவும்.
y=-\frac{14}{19}
இரு பக்கங்களையும் -38-ஆல் வகுக்கவும்.
5x+3\left(-\frac{14}{19}\right)=2
5x+3y=2-இல் y-க்கு -\frac{14}{19}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
5x-\frac{42}{19}=2
-\frac{14}{19}-ஐ 3 முறை பெருக்கவும்.
5x=\frac{80}{19}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{42}{19}-ஐக் கூட்டவும்.
x=\frac{16}{19}
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{16}{19},y=-\frac{14}{19}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}