பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x-2y=17,7x-6y=47
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x-2y=17
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=2y+17
சமன்பாட்டின் இரு பக்கங்களிலும் 2y-ஐக் கூட்டவும்.
7\left(2y+17\right)-6y=47
பிற சமன்பாடு 7x-6y=47-இல் x-க்கு 2y+17-ஐப் பிரதியிடவும்.
14y+119-6y=47
2y+17-ஐ 7 முறை பெருக்கவும்.
8y+119=47
-6y-க்கு 14y-ஐக் கூட்டவும்.
8y=-72
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 119-ஐக் கழிக்கவும்.
y=-9
இரு பக்கங்களையும் 8-ஆல் வகுக்கவும்.
x=2\left(-9\right)+17
x=2y+17-இல் y-க்கு -9-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-18+17
-9-ஐ 2 முறை பெருக்கவும்.
x=-1
-18-க்கு 17-ஐக் கூட்டவும்.
x=-1,y=-9
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x-2y=17,7x-6y=47
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\47\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\7&-6\end{matrix}\right))\left(\begin{matrix}17\\47\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6-\left(-2\times 7\right)}&-\frac{-2}{-6-\left(-2\times 7\right)}\\-\frac{7}{-6-\left(-2\times 7\right)}&\frac{1}{-6-\left(-2\times 7\right)}\end{matrix}\right)\left(\begin{matrix}17\\47\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}&\frac{1}{4}\\-\frac{7}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}17\\47\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\times 17+\frac{1}{4}\times 47\\-\frac{7}{8}\times 17+\frac{1}{8}\times 47\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-9\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-1,y=-9
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x-2y=17,7x-6y=47
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
7x+7\left(-2\right)y=7\times 17,7x-6y=47
x மற்றும் 7x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 7-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
7x-14y=119,7x-6y=47
எளிமையாக்கவும்.
7x-7x-14y+6y=119-47
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 7x-14y=119-இலிருந்து 7x-6y=47-ஐக் கழிக்கவும்.
-14y+6y=119-47
-7x-க்கு 7x-ஐக் கூட்டவும். விதிகள் 7x மற்றும் -7x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-8y=119-47
6y-க்கு -14y-ஐக் கூட்டவும்.
-8y=72
-47-க்கு 119-ஐக் கூட்டவும்.
y=-9
இரு பக்கங்களையும் -8-ஆல் வகுக்கவும்.
7x-6\left(-9\right)=47
7x-6y=47-இல் y-க்கு -9-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
7x+54=47
-9-ஐ -6 முறை பெருக்கவும்.
7x=-7
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 54-ஐக் கழிக்கவும்.
x=-1
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
x=-1,y=-9
இப்போது அமைப்பு சரிசெய்யப்பட்டது.