பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x-2\left(3y-1\right)=-4
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x-6y+2=-4
3y-1-ஐ -2 முறை பெருக்கவும்.
x-6y=-6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
x=6y-6
சமன்பாட்டின் இரு பக்கங்களிலும் 6y-ஐக் கூட்டவும்.
-\left(-\left(6y-6\right)-7\right)+\frac{2}{3}y=1
பிற சமன்பாடு -\left(-x-7\right)+\frac{2}{3}y=1-இல் x-க்கு -6+6y-ஐப் பிரதியிடவும்.
-\left(-6y+6-7\right)+\frac{2}{3}y=1
-6+6y-ஐ -1 முறை பெருக்கவும்.
-\left(-6y-1\right)+\frac{2}{3}y=1
-7-க்கு 6-ஐக் கூட்டவும்.
6y+1+\frac{2}{3}y=1
-6y-1-ஐ -1 முறை பெருக்கவும்.
\frac{20}{3}y+1=1
\frac{2y}{3}-க்கு 6y-ஐக் கூட்டவும்.
\frac{20}{3}y=0
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும்.
y=0
சமன்பாட்டின் இரு பக்கங்களையும் \frac{20}{3}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-6
x=6y-6-இல் y-க்கு 0-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-6,y=0
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x-2\left(3y-1\right)=-4,-\left(-x-7\right)+\frac{2}{3}y=1
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
x-2\left(3y-1\right)=-4
முதல் சமன்பாட்டைத் தரநிலையான வடிவத்தில் இடுவதற்கு அதை எளிமையாக்கவும்.
x-6y+2=-4
3y-1-ஐ -2 முறை பெருக்கவும்.
x-6y=-6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
-\left(-x-7\right)+\frac{2}{3}y=1
இரண்டாவது சமன்பாட்டைத் தரநிலையான வடிவத்தில் இடுவதற்கு அதை எளிமையாக்கவும்.
x+7+\frac{2}{3}y=1
-x-7-ஐ -1 முறை பெருக்கவும்.
x+\frac{2}{3}y=-6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 7-ஐக் கழிக்கவும்.
\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-6\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&\frac{2}{3}\end{matrix}\right))\left(\begin{matrix}-6\\-6\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{2}{3}}{\frac{2}{3}-\left(-6\right)}&-\frac{-6}{\frac{2}{3}-\left(-6\right)}\\-\frac{1}{\frac{2}{3}-\left(-6\right)}&\frac{1}{\frac{2}{3}-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{9}{10}\\-\frac{3}{20}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\-6\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-6\right)+\frac{9}{10}\left(-6\right)\\-\frac{3}{20}\left(-6\right)+\frac{3}{20}\left(-6\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\0\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-6,y=0
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.