பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x+y=30,20x+25y=690
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+y=30
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-y+30
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
20\left(-y+30\right)+25y=690
பிற சமன்பாடு 20x+25y=690-இல் x-க்கு -y+30-ஐப் பிரதியிடவும்.
-20y+600+25y=690
-y+30-ஐ 20 முறை பெருக்கவும்.
5y+600=690
25y-க்கு -20y-ஐக் கூட்டவும்.
5y=90
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 600-ஐக் கழிக்கவும்.
y=18
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=-18+30
x=-y+30-இல் y-க்கு 18-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=12
-18-க்கு 30-ஐக் கூட்டவும்.
x=12,y=18
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+y=30,20x+25y=690
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&1\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\690\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}1&1\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\690\end{matrix}\right)
\left(\begin{matrix}1&1\\20&25\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\690\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\690\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{25-20}&-\frac{1}{25-20}\\-\frac{20}{25-20}&\frac{1}{25-20}\end{matrix}\right)\left(\begin{matrix}30\\690\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-\frac{1}{5}\\-4&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}30\\690\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 30-\frac{1}{5}\times 690\\-4\times 30+\frac{1}{5}\times 690\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\18\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=12,y=18
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+y=30,20x+25y=690
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
20x+20y=20\times 30,20x+25y=690
x மற்றும் 20x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 20-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
20x+20y=600,20x+25y=690
எளிமையாக்கவும்.
20x-20x+20y-25y=600-690
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 20x+20y=600-இலிருந்து 20x+25y=690-ஐக் கழிக்கவும்.
20y-25y=600-690
-20x-க்கு 20x-ஐக் கூட்டவும். விதிகள் 20x மற்றும் -20x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-5y=600-690
-25y-க்கு 20y-ஐக் கூட்டவும்.
-5y=-90
-690-க்கு 600-ஐக் கூட்டவும்.
y=18
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
20x+25\times 18=690
20x+25y=690-இல் y-க்கு 18-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
20x+450=690
18-ஐ 25 முறை பெருக்கவும்.
20x=240
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 450-ஐக் கழிக்கவும்.
x=12
இரு பக்கங்களையும் 20-ஆல் வகுக்கவும்.
x=12,y=18
இப்போது அமைப்பு சரிசெய்யப்பட்டது.