பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{2}{5}x-\frac{3}{8}y=-5
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் \frac{3}{8}y-ஐக் கழிக்கவும்.
x+y=220,\frac{2}{5}x-\frac{3}{8}y=-5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+y=220
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-y+220
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
\frac{2}{5}\left(-y+220\right)-\frac{3}{8}y=-5
பிற சமன்பாடு \frac{2}{5}x-\frac{3}{8}y=-5-இல் x-க்கு -y+220-ஐப் பிரதியிடவும்.
-\frac{2}{5}y+88-\frac{3}{8}y=-5
-y+220-ஐ \frac{2}{5} முறை பெருக்கவும்.
-\frac{31}{40}y+88=-5
-\frac{3y}{8}-க்கு -\frac{2y}{5}-ஐக் கூட்டவும்.
-\frac{31}{40}y=-93
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 88-ஐக் கழிக்கவும்.
y=120
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{31}{40}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-120+220
x=-y+220-இல் y-க்கு 120-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=100
-120-க்கு 220-ஐக் கூட்டவும்.
x=100,y=120
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
\frac{2}{5}x-\frac{3}{8}y=-5
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் \frac{3}{8}y-ஐக் கழிக்கவும்.
x+y=220,\frac{2}{5}x-\frac{3}{8}y=-5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}220\\-5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{3}{8}}{-\frac{3}{8}-\frac{2}{5}}&-\frac{1}{-\frac{3}{8}-\frac{2}{5}}\\-\frac{\frac{2}{5}}{-\frac{3}{8}-\frac{2}{5}}&\frac{1}{-\frac{3}{8}-\frac{2}{5}}\end{matrix}\right)\left(\begin{matrix}220\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{31}&\frac{40}{31}\\\frac{16}{31}&-\frac{40}{31}\end{matrix}\right)\left(\begin{matrix}220\\-5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{31}\times 220+\frac{40}{31}\left(-5\right)\\\frac{16}{31}\times 220-\frac{40}{31}\left(-5\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\120\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=100,y=120
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
\frac{2}{5}x-\frac{3}{8}y=-5
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் \frac{3}{8}y-ஐக் கழிக்கவும்.
x+y=220,\frac{2}{5}x-\frac{3}{8}y=-5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
\frac{2}{5}x+\frac{2}{5}y=\frac{2}{5}\times 220,\frac{2}{5}x-\frac{3}{8}y=-5
x மற்றும் \frac{2x}{5}-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் \frac{2}{5}-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
\frac{2}{5}x+\frac{2}{5}y=88,\frac{2}{5}x-\frac{3}{8}y=-5
எளிமையாக்கவும்.
\frac{2}{5}x-\frac{2}{5}x+\frac{2}{5}y+\frac{3}{8}y=88+5
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் \frac{2}{5}x+\frac{2}{5}y=88-இலிருந்து \frac{2}{5}x-\frac{3}{8}y=-5-ஐக் கழிக்கவும்.
\frac{2}{5}y+\frac{3}{8}y=88+5
-\frac{2x}{5}-க்கு \frac{2x}{5}-ஐக் கூட்டவும். விதிகள் \frac{2x}{5} மற்றும் -\frac{2x}{5} ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
\frac{31}{40}y=88+5
\frac{3y}{8}-க்கு \frac{2y}{5}-ஐக் கூட்டவும்.
\frac{31}{40}y=93
5-க்கு 88-ஐக் கூட்டவும்.
y=120
சமன்பாட்டின் இரு பக்கங்களையும் \frac{31}{40}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
\frac{2}{5}x-\frac{3}{8}\times 120=-5
\frac{2}{5}x-\frac{3}{8}y=-5-இல் y-க்கு 120-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
\frac{2}{5}x-45=-5
120-ஐ -\frac{3}{8} முறை பெருக்கவும்.
\frac{2}{5}x=40
சமன்பாட்டின் இரு பக்கங்களிலும் 45-ஐக் கூட்டவும்.
x=100
சமன்பாட்டின் இரு பக்கங்களையும் \frac{2}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=100,y=120
இப்போது அமைப்பு சரிசெய்யப்பட்டது.