\left\{ \begin{array} { l } { x + y = 22 } \\ { 10 x + 4 y = 178 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x=15
y=7
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
x+y=22,10x+4y=178
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+y=22
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-y+22
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
10\left(-y+22\right)+4y=178
பிற சமன்பாடு 10x+4y=178-இல் x-க்கு -y+22-ஐப் பிரதியிடவும்.
-10y+220+4y=178
-y+22-ஐ 10 முறை பெருக்கவும்.
-6y+220=178
4y-க்கு -10y-ஐக் கூட்டவும்.
-6y=-42
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 220-ஐக் கழிக்கவும்.
y=7
இரு பக்கங்களையும் -6-ஆல் வகுக்கவும்.
x=-7+22
x=-y+22-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=15
-7-க்கு 22-ஐக் கூட்டவும்.
x=15,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+y=22,10x+4y=178
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&1\\10&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\178\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&1\\10&4\end{matrix}\right))\left(\begin{matrix}1&1\\10&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&4\end{matrix}\right))\left(\begin{matrix}22\\178\end{matrix}\right)
\left(\begin{matrix}1&1\\10&4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&4\end{matrix}\right))\left(\begin{matrix}22\\178\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&4\end{matrix}\right))\left(\begin{matrix}22\\178\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-10}&-\frac{1}{4-10}\\-\frac{10}{4-10}&\frac{1}{4-10}\end{matrix}\right)\left(\begin{matrix}22\\178\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{6}\\\frac{5}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}22\\178\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 22+\frac{1}{6}\times 178\\\frac{5}{3}\times 22-\frac{1}{6}\times 178\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\7\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=15,y=7
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+y=22,10x+4y=178
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
10x+10y=10\times 22,10x+4y=178
x மற்றும் 10x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 10-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
10x+10y=220,10x+4y=178
எளிமையாக்கவும்.
10x-10x+10y-4y=220-178
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 10x+10y=220-இலிருந்து 10x+4y=178-ஐக் கழிக்கவும்.
10y-4y=220-178
-10x-க்கு 10x-ஐக் கூட்டவும். விதிகள் 10x மற்றும் -10x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
6y=220-178
-4y-க்கு 10y-ஐக் கூட்டவும்.
6y=42
-178-க்கு 220-ஐக் கூட்டவும்.
y=7
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
10x+4\times 7=178
10x+4y=178-இல் y-க்கு 7-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
10x+28=178
7-ஐ 4 முறை பெருக்கவும்.
10x=150
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 28-ஐக் கழிக்கவும்.
x=15
இரு பக்கங்களையும் 10-ஆல் வகுக்கவும்.
x=15,y=7
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}