பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x+y=15,250x+80y=2900
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+y=15
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-y+15
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
250\left(-y+15\right)+80y=2900
பிற சமன்பாடு 250x+80y=2900-இல் x-க்கு -y+15-ஐப் பிரதியிடவும்.
-250y+3750+80y=2900
-y+15-ஐ 250 முறை பெருக்கவும்.
-170y+3750=2900
80y-க்கு -250y-ஐக் கூட்டவும்.
-170y=-850
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3750-ஐக் கழிக்கவும்.
y=5
இரு பக்கங்களையும் -170-ஆல் வகுக்கவும்.
x=-5+15
x=-y+15-இல் y-க்கு 5-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=10
-5-க்கு 15-ஐக் கூட்டவும்.
x=10,y=5
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+y=15,250x+80y=2900
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&1\\250&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\2900\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&1\\250&80\end{matrix}\right))\left(\begin{matrix}1&1\\250&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\250&80\end{matrix}\right))\left(\begin{matrix}15\\2900\end{matrix}\right)
\left(\begin{matrix}1&1\\250&80\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\250&80\end{matrix}\right))\left(\begin{matrix}15\\2900\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\250&80\end{matrix}\right))\left(\begin{matrix}15\\2900\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{80}{80-250}&-\frac{1}{80-250}\\-\frac{250}{80-250}&\frac{1}{80-250}\end{matrix}\right)\left(\begin{matrix}15\\2900\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{17}&\frac{1}{170}\\\frac{25}{17}&-\frac{1}{170}\end{matrix}\right)\left(\begin{matrix}15\\2900\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{17}\times 15+\frac{1}{170}\times 2900\\\frac{25}{17}\times 15-\frac{1}{170}\times 2900\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=10,y=5
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+y=15,250x+80y=2900
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
250x+250y=250\times 15,250x+80y=2900
x மற்றும் 250x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 250-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
250x+250y=3750,250x+80y=2900
எளிமையாக்கவும்.
250x-250x+250y-80y=3750-2900
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 250x+250y=3750-இலிருந்து 250x+80y=2900-ஐக் கழிக்கவும்.
250y-80y=3750-2900
-250x-க்கு 250x-ஐக் கூட்டவும். விதிகள் 250x மற்றும் -250x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
170y=3750-2900
-80y-க்கு 250y-ஐக் கூட்டவும்.
170y=850
-2900-க்கு 3750-ஐக் கூட்டவும்.
y=5
இரு பக்கங்களையும் 170-ஆல் வகுக்கவும்.
250x+80\times 5=2900
250x+80y=2900-இல் y-க்கு 5-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
250x+400=2900
5-ஐ 80 முறை பெருக்கவும்.
250x=2500
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 400-ஐக் கழிக்கவும்.
x=10
இரு பக்கங்களையும் 250-ஆல் வகுக்கவும்.
x=10,y=5
இப்போது அமைப்பு சரிசெய்யப்பட்டது.