பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x+5y=5,3x-2y=3
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+5y=5
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-5y+5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 5y-ஐக் கழிக்கவும்.
3\left(-5y+5\right)-2y=3
பிற சமன்பாடு 3x-2y=3-இல் x-க்கு -5y+5-ஐப் பிரதியிடவும்.
-15y+15-2y=3
-5y+5-ஐ 3 முறை பெருக்கவும்.
-17y+15=3
-2y-க்கு -15y-ஐக் கூட்டவும்.
-17y=-12
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 15-ஐக் கழிக்கவும்.
y=\frac{12}{17}
இரு பக்கங்களையும் -17-ஆல் வகுக்கவும்.
x=-5\times \frac{12}{17}+5
x=-5y+5-இல் y-க்கு \frac{12}{17}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{60}{17}+5
\frac{12}{17}-ஐ -5 முறை பெருக்கவும்.
x=\frac{25}{17}
-\frac{60}{17}-க்கு 5-ஐக் கூட்டவும்.
x=\frac{25}{17},y=\frac{12}{17}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+5y=5,3x-2y=3
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}1&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
\left(\begin{matrix}1&5\\3&-2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-5\times 3}&-\frac{5}{-2-5\times 3}\\-\frac{3}{-2-5\times 3}&\frac{1}{-2-5\times 3}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{5}{17}\\\frac{3}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 5+\frac{5}{17}\times 3\\\frac{3}{17}\times 5-\frac{1}{17}\times 3\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{17}\\\frac{12}{17}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{25}{17},y=\frac{12}{17}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+5y=5,3x-2y=3
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3x+3\times 5y=3\times 5,3x-2y=3
x மற்றும் 3x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
3x+15y=15,3x-2y=3
எளிமையாக்கவும்.
3x-3x+15y+2y=15-3
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 3x+15y=15-இலிருந்து 3x-2y=3-ஐக் கழிக்கவும்.
15y+2y=15-3
-3x-க்கு 3x-ஐக் கூட்டவும். விதிகள் 3x மற்றும் -3x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
17y=15-3
2y-க்கு 15y-ஐக் கூட்டவும்.
17y=12
-3-க்கு 15-ஐக் கூட்டவும்.
y=\frac{12}{17}
இரு பக்கங்களையும் 17-ஆல் வகுக்கவும்.
3x-2\times \frac{12}{17}=3
3x-2y=3-இல் y-க்கு \frac{12}{17}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
3x-\frac{24}{17}=3
\frac{12}{17}-ஐ -2 முறை பெருக்கவும்.
3x=\frac{75}{17}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{24}{17}-ஐக் கூட்டவும்.
x=\frac{25}{17}
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{25}{17},y=\frac{12}{17}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.