பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x+4y=-1,2x-4y=4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+4y=-1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-4y-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
2\left(-4y-1\right)-4y=4
பிற சமன்பாடு 2x-4y=4-இல் x-க்கு -4y-1-ஐப் பிரதியிடவும்.
-8y-2-4y=4
-4y-1-ஐ 2 முறை பெருக்கவும்.
-12y-2=4
-4y-க்கு -8y-ஐக் கூட்டவும்.
-12y=6
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.
y=-\frac{1}{2}
இரு பக்கங்களையும் -12-ஆல் வகுக்கவும்.
x=-4\left(-\frac{1}{2}\right)-1
x=-4y-1-இல் y-க்கு -\frac{1}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=2-1
-\frac{1}{2}-ஐ -4 முறை பெருக்கவும்.
x=1
2-க்கு -1-ஐக் கூட்டவும்.
x=1,y=-\frac{1}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+4y=-1,2x-4y=4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
\left(\begin{matrix}1&4\\2&-4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-4\end{matrix}\right))\left(\begin{matrix}-1\\4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-4\times 2}&-\frac{4}{-4-4\times 2}\\-\frac{2}{-4-4\times 2}&\frac{1}{-4-4\times 2}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{6}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}-1\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-1\right)+\frac{1}{3}\times 4\\\frac{1}{6}\left(-1\right)-\frac{1}{12}\times 4\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{1}{2}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=-\frac{1}{2}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+4y=-1,2x-4y=4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2x+2\times 4y=2\left(-1\right),2x-4y=4
x மற்றும் 2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
2x+8y=-2,2x-4y=4
எளிமையாக்கவும்.
2x-2x+8y+4y=-2-4
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 2x+8y=-2-இலிருந்து 2x-4y=4-ஐக் கழிக்கவும்.
8y+4y=-2-4
-2x-க்கு 2x-ஐக் கூட்டவும். விதிகள் 2x மற்றும் -2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
12y=-2-4
4y-க்கு 8y-ஐக் கூட்டவும்.
12y=-6
-4-க்கு -2-ஐக் கூட்டவும்.
y=-\frac{1}{2}
இரு பக்கங்களையும் 12-ஆல் வகுக்கவும்.
2x-4\left(-\frac{1}{2}\right)=4
2x-4y=4-இல் y-க்கு -\frac{1}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
2x+2=4
-\frac{1}{2}-ஐ -4 முறை பெருக்கவும்.
2x=2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
x=1
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=1,y=-\frac{1}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.