\left\{ \begin{array} { l } { x + 2 y = 2 } \\ { x - 3 y = - 5 } \end{array} \right.
x, y-க்காகத் தீர்க்கவும்
x=-\frac{4}{5}=-0.8
y = \frac{7}{5} = 1\frac{2}{5} = 1.4
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
x+2y=2,x-3y=-5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+2y=2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-2y+2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
-2y+2-3y=-5
பிற சமன்பாடு x-3y=-5-இல் x-க்கு -2y+2-ஐப் பிரதியிடவும்.
-5y+2=-5
-3y-க்கு -2y-ஐக் கூட்டவும்.
-5y=-7
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
y=\frac{7}{5}
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
x=-2\times \frac{7}{5}+2
x=-2y+2-இல் y-க்கு \frac{7}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{14}{5}+2
\frac{7}{5}-ஐ -2 முறை பெருக்கவும்.
x=-\frac{4}{5}
-\frac{14}{5}-க்கு 2-ஐக் கூட்டவும்.
x=-\frac{4}{5},y=\frac{7}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+2y=2,x-3y=-5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 2+\frac{2}{5}\left(-5\right)\\\frac{1}{5}\times 2-\frac{1}{5}\left(-5\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5}\\\frac{7}{5}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-\frac{4}{5},y=\frac{7}{5}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+2y=2,x-3y=-5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
x-x+2y+3y=2+5
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் x+2y=2-இலிருந்து x-3y=-5-ஐக் கழிக்கவும்.
2y+3y=2+5
-x-க்கு x-ஐக் கூட்டவும். விதிகள் x மற்றும் -x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
5y=2+5
3y-க்கு 2y-ஐக் கூட்டவும்.
5y=7
5-க்கு 2-ஐக் கூட்டவும்.
y=\frac{7}{5}
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x-3\times \frac{7}{5}=-5
x-3y=-5-இல் y-க்கு \frac{7}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x-\frac{21}{5}=-5
\frac{7}{5}-ஐ -3 முறை பெருக்கவும்.
x=-\frac{4}{5}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{21}{5}-ஐக் கூட்டவும்.
x=-\frac{4}{5},y=\frac{7}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}