பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

8x-4y=2,2x+3y=6
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
8x-4y=2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
8x=4y+2
சமன்பாட்டின் இரு பக்கங்களிலும் 4y-ஐக் கூட்டவும்.
x=\frac{1}{8}\left(4y+2\right)
இரு பக்கங்களையும் 8-ஆல் வகுக்கவும்.
x=\frac{1}{2}y+\frac{1}{4}
4y+2-ஐ \frac{1}{8} முறை பெருக்கவும்.
2\left(\frac{1}{2}y+\frac{1}{4}\right)+3y=6
பிற சமன்பாடு 2x+3y=6-இல் x-க்கு \frac{y}{2}+\frac{1}{4}-ஐப் பிரதியிடவும்.
y+\frac{1}{2}+3y=6
\frac{y}{2}+\frac{1}{4}-ஐ 2 முறை பெருக்கவும்.
4y+\frac{1}{2}=6
3y-க்கு y-ஐக் கூட்டவும்.
4y=\frac{11}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{2}-ஐக் கழிக்கவும்.
y=\frac{11}{8}
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{1}{2}\times \frac{11}{8}+\frac{1}{4}
x=\frac{1}{2}y+\frac{1}{4}-இல் y-க்கு \frac{11}{8}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{11}{16}+\frac{1}{4}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{11}{8}-ஐ \frac{1}{2} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{15}{16}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{11}{16} உடன் \frac{1}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{15}{16},y=\frac{11}{8}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
8x-4y=2,2x+3y=6
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}8&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}8&-4\\2&3\end{matrix}\right))\left(\begin{matrix}8&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-4\\2&3\end{matrix}\right))\left(\begin{matrix}2\\6\end{matrix}\right)
\left(\begin{matrix}8&-4\\2&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-4\\2&3\end{matrix}\right))\left(\begin{matrix}2\\6\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-4\\2&3\end{matrix}\right))\left(\begin{matrix}2\\6\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-\left(-4\times 2\right)}&-\frac{-4}{8\times 3-\left(-4\times 2\right)}\\-\frac{2}{8\times 3-\left(-4\times 2\right)}&\frac{8}{8\times 3-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}2\\6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{32}&\frac{1}{8}\\-\frac{1}{16}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}2\\6\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{32}\times 2+\frac{1}{8}\times 6\\-\frac{1}{16}\times 2+\frac{1}{4}\times 6\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{16}\\\frac{11}{8}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{15}{16},y=\frac{11}{8}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
8x-4y=2,2x+3y=6
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
2\times 8x+2\left(-4\right)y=2\times 2,8\times 2x+8\times 3y=8\times 6
8x மற்றும் 2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 8-ஆலும் பெருக்கவும்.
16x-8y=4,16x+24y=48
எளிமையாக்கவும்.
16x-16x-8y-24y=4-48
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 16x-8y=4-இலிருந்து 16x+24y=48-ஐக் கழிக்கவும்.
-8y-24y=4-48
-16x-க்கு 16x-ஐக் கூட்டவும். விதிகள் 16x மற்றும் -16x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-32y=4-48
-24y-க்கு -8y-ஐக் கூட்டவும்.
-32y=-44
-48-க்கு 4-ஐக் கூட்டவும்.
y=\frac{11}{8}
இரு பக்கங்களையும் -32-ஆல் வகுக்கவும்.
2x+3\times \frac{11}{8}=6
2x+3y=6-இல் y-க்கு \frac{11}{8}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
2x+\frac{33}{8}=6
\frac{11}{8}-ஐ 3 முறை பெருக்கவும்.
2x=\frac{15}{8}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{33}{8}-ஐக் கழிக்கவும்.
x=\frac{15}{16}
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
x=\frac{15}{16},y=\frac{11}{8}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.